Causal machine learning: A survey and open problems J Kaddour, A Lynch, Q Liu, MJ Kusner, R Silva arXiv preprint arXiv:2206.15475, 2022 | 31 | 2022 |
Probabilistic Active Meta-Learning J Kaddour, S Sæmundsson, M Deisenroth NeurIPS 2020, 2020 | 28 | 2020 |
Causal Effect Inference for Structured Treatments J Kaddour, Y Zhu, Q Liu, MJ Kusner, R Silva NeurIPS 2021, 2021 | 21 | 2021 |
When Do Flat Minima Optimizers Work? J Kaddour, L Liu, R Silva, M Kusner NeurIPS 2022, 2022 | 18* | 2022 |
SATISFy: Towards a self-learning analyzer for time series forecasting in self-improving systems C Krupitzer, M Pfannemüller, J Kaddour, C Becker 2018 IEEE 3rd International Workshops on Foundations and Applications of …, 2018 | 11 | 2018 |
Stop Wasting My Time! Saving Days of ImageNet and BERT Training with Latest Weight Averaging J Kaddour NeurIPS 2022 HITY Workshop, 2022 | 6 | 2022 |
Evaluating the Impact of Geometric and Statistical Skews on Out-Of-Distribution Generalization Performance A Lynch, J Kaddour, R Silva NeurIPS 2022 Workshop on Distribution Shifts: Connecting Methods and …, 2022 | 6 | 2022 |
Evaluating Self-Supervised Learning for Molecular Graph Embeddings H Wang, J Kaddour, S Liu, J Tang, M Kusner, J Lasenby, Q Liu ICML2022 Pre-Training Workshop, 2022 | 5 | 2022 |
DAG learning on the permutahedron V Zantedeschi, L Franceschi, J Kaddour, M Kusner, V Niculae ICLR 2023, 2023 | 4 | 2023 |
Spawrious: A benchmark for fine control of spurious correlation biases A Lynch, GJS Dovonon, J Kaddour, R Silva arXiv preprint arXiv:2303.05470, 2023 | 2 | 2023 |
TTIDA: Controllable Generative Data Augmentation via Text-to-Text and Text-to-Image Models Y Yin, J Kaddour, X Zhang, Y Nie, Z Liu, L Kong, Q Liu arXiv preprint arXiv:2304.08821, 2023 | | 2023 |
The MiniPile Challenge for Data-Efficient Language Models J Kaddour arXiv preprint arXiv:2304.08442, 2023 | | 2023 |