Superintegrable Hamiltonian systems: geometry and perturbations F Fasso` Acta Applicandae Mathematica 87 (1-3), 93-121, 2005 | 104 | 2005 |

Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems F Fassò, M Guzzo, G Benettin Communications in mathematical physics 197 (2), 347-360, 1998 | 91 | 1998 |

Nekhoroshev-stability of and in the spatial restricted three-body problem G Benettin, F Fassò, M Guzzo Regular and chaotic dynamics 3 (3), 56-72, 1998 | 81 | 1998 |

Lie series method for vector fields and Hamiltonian perturbation theory F Fassò Zeitschrift für angewandte Mathematik und Physik ZAMP 41 (6), 843-864, 1990 | 60 | 1990 |

Geometry of KAM tori for nearly integrable Hamiltonian systems H Broer, R Cushman, F Fasso, F Takens Ergodic Theory and Dynamical Systems 27 (3), 725-741, 2007 | 49 | 2007 |

On the Stability of Elliptic Equilibria M Guzzo, F Fasso`, G Benettin Mathematical Physics Electronic Journal 4, Paper 1, 16 pages, 1998 | 49 | 1998 |

Fast rotations of the rigid body: a study by Hamiltonian perturbation theory. Part I G Benettin, F Fassò Nonlinearity 9 (1), 137, 1996 | 48 | 1996 |

The exact computation of the free rigid body motion and its use in splitting methods E Celledoni, F Fassò, N Säfström, A Zanna SIAM Journal on Scientific Computing 30 (4), 2084-2112, 2008 | 41 | 2008 |

Stability properties of the Riemann ellipsoids F Fasso, D Lewis Archive for rational mechanics and analysis 158 (4), 259-292, 2001 | 40 | 2001 |

The Euler-Poinsot top: A non-commutatively integrable system without global action-angle coordinates F Fassò Zeitschrift für angewandte Mathematik und Physik ZAMP 47 (6), 953-976, 1996 | 40 | 1996 |

Fast rotations of the rigid body: A study by Hamiltonian perturbation theory. Part II: Gyroscopic rotations G Benettin, F Fassò, M Guzzo Nonlinearity 10 (6), 1695, 1997 | 36 | 1997 |

Conservation of energy and momenta in nonholonomic systems with affine constraints F Fassò, N Sansonetto Regular and Chaotic Dynamics 20, 449-462, 2015 | 35 | 2015 |

Periodic flows, rank-two Poisson structures, and nonholonomic mechanics F Fasso, A Giacobbe, N Sansonetto Regular and Chaotic Dynamics 10 (3), 267-284, 2005 | 34 | 2005 |

A changing-chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifolds G Benettin, AM Cherubini, F Fassò SIAM Journal on Scientific Computing 23 (4), 1189-1203, 2001 | 32 | 2001 |

Hamiltonian perturbation theory on a manifold F Fassò Celestial Mechanics and Dynamical Astronomy 62 (1), 43-69, 1995 | 31 | 1995 |

Moving energies as first integrals of nonholonomic systems with affine constraints F Fasso, LC García-Naranjo, N Sansonetto Nonlinearity 31 (3), 755, 2018 | 25 | 2018 |

Conservation of `moving 'energy in nonholonomic systems with affine constraints and integrability of spheres on rotating surfaces F Fassò, N Sansonetto arXiv preprint arXiv:1503.06661, 2015 | 25 | 2015 |

Comparison of splitting algorithms for the rigid body F Fassò Journal of computational physics 189 (2), 527-538, 2003 | 25 | 2003 |

From Hamiltonian perturbation theory to symplectic integrators and back G Benettin, F Fassò Applied numerical mathematics 29 (1), 73-87, 1999 | 25 | 1999 |

Quasi-periodicity of motions and complete integrability of Hamiltonian systems F Fasso Ergodic Theory and Dynamical Systems 18 (6), 1349-1362, 1998 | 21 | 1998 |