Andriy Mnih
Andriy Mnih
Research Scientist at DeepMind
在 cs.toronto.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Probabilistic matrix factorization
R Salakhutdinov, A Mnih
Advances in neural information processing systems 20, 1257-1264, 2008
4127*2008
Restricted Boltzmann machines for collaborative filtering
R Salakhutdinov, A Mnih, G Hinton
Proceedings of the 24th international conference on Machine learning, 791-798, 2007
20592007
Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
R Salakhutdinov, A Mnih
Proceedings of the 25th international conference on Machine learning, 880-887, 2008
15342008
Bayesian probabilistic matrix factorization using Markov chain Monte Carlo
R Salakhutdinov, A Mnih
Proceedings of the 25th international conference on Machine learning, 880-887, 2008
15182008
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
CJ Maddison, A Mnih, YW Teh
International Conference on Learning Representations 2017, 2016
12672016
A scalable hierarchical distributed language model
A Mnih, GE Hinton
Advances in Neural Information Processing Systems 21, 1081-1088, 2009
11262009
Three new graphical models for statistical language modelling
A Mnih, G Hinton
Proceedings of the 24th international conference on Machine learning, 641-648, 2007
6972007
Neural Variational Inference and Learning in Belief Networks
A Mnih, K Gregor
International Conference on Machine Learning 2014, 2014
6272014
Learning word embeddings efficiently with noise-contrastive estimation
A Mnih, K Kavukcuoglu
Advances in neural information processing systems 26, 2265-2273, 2013
5772013
A fast and simple algorithm for training neural probabilistic language models
A Mnih, YW Teh
International Conference on Machine Learning 2012, 2012
5602012
Disentangling by factorising
H Kim, A Mnih
International Conference on Machine Learning 2018, 2018
5422018
Deep autoregressive networks
K Gregor, I Danihelka, A Mnih, C Blundell, D Wierstra
Proceedings of the 31st International Conference on Machine Learning (ICML …, 2014
2392014
Variational inference for Monte Carlo objectives
A Mnih, DJ Rezende
International Conference on Machine Learning 2016, 2016
2282016
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models
G Tucker, A Mnih, CJ Maddison, J Lawson, J Sohl-Dickstein
Advances in Neural Information Processing Systems, 2624-2633, 2017
2052017
Attentive Neural Processes
H Kim, A Mnih, J Schwarz, M Garnelo, A Eslami, D Rosenbaum, O Vinyals, ...
International Conference on Learning Representations 2019, 2018
1382018
Filtering Variational Objectives
CJ Maddison, D Lawson, G Tucker, N Heess, M Norouzi, A Mnih, ...
Advances in Neural Information Processing Systems 2017, 2017
1302017
Implicit reparameterization gradients
M Figurnov, S Mohamed, A Mnih
Advances in Neural Information Processing Systems 31, 441-452, 2018
1252018
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
S Gu, S Levine, I Sutskever, A Mnih
International Conference on Learning Representations 2016, 2015
1212015
Visualizing similarity data with a mixture of maps
J Cook, I Sutskever, A Mnih, G Hinton
Artificial Intelligence and Statistics, 67-74, 2007
1062007
Monte Carlo Gradient Estimation in Machine Learning
S Mohamed, M Rosca, M Figurnov, A Mnih
Journal of Machine Learning Research 21 (132), 1-62, 2020
1032020
系统目前无法执行此操作,请稍后再试。
文章 1–20