Genetic effects on gene expression across human tissues GTEx Consortium Lead analysts: Aguet François 1 Brown Andrew A. 2 3 4 Castel ... Nature 550 (7675), 204-213, 2017 | 3510 | 2017 |
Graph clustering with graph neural networks A Tsitsulin, J Palowitch, B Perozzi, E Müller Journal of Machine Learning Research 24 (127), 1-21, 2023 | 268 | 2023 |
Co-expression networks reveal the tissue-specific regulation of transcription and splicing A Saha, Y Kim, ADH Gewirtz, B Jo, C Gao, IC McDowell, BE Engelhardt, ... Genome research 27 (11), 1843-1858, 2017 | 177 | 2017 |
Community extraction in multilayer networks with heterogeneous community structure JD Wilson, J Palowitch, S Bhamidi, AB Nobel Journal of Machine Learning Research 18 (149), 1-49, 2017 | 78 | 2017 |
Graphworld: Fake graphs bring real insights for gnns J Palowitch, A Tsitsulin, B Mayer, B Perozzi Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and …, 2022 | 75 | 2022 |
Identifying cis-mediators for trans-eQTLs across many human tissues using genomic mediation analysis F Yang, J Wang, BL Pierce, LS Chen, F Aguet, KG Ardlie, BB Cummings, ... Genome research 27 (11), 1859-1871, 2017 | 70 | 2017 |
Tf-gnn: Graph neural networks in tensorflow O Ferludin, A Eigenwillig, M Blais, D Zelle, J Pfeifer, A Sanchez-Gonzalez, ... arXiv preprint arXiv:2207.03522, 2022 | 44 | 2022 |
Significance-based community detection in weighted networks J Palowitch, S Bhamidi, AB Nobel The Journal of Machine Learning Research 18 (1), 6899-6946, 2017 | 42* | 2017 |
Debiasing graph representations via metadata-orthogonal training J Palowitch, B Perozzi 2020 IEEE/ACM International Conference on Advances in Social Networks …, 2020 | 38* | 2020 |
Synthetic Graph Generation to Benchmark Graph Learning J Palowitch, A Tsitsulin, B Perozzi, BA Mayer NeurIPS 2022 Workshop: New Frontiers in Graph Learning, 2022 | 26* | 2022 |
Estimation of cis-eQTL effect sizes using a log of linear model J Palowitch, A Shabalin, YH Zhou, AB Nobel, FA Wright Biometrics 74 (2), 616-625, 2018 | 13 | 2018 |
Zero-shot transfer learning within a heterogeneous graph via knowledge transfer networks M Yoon, J Palowitch, D Zelle, Z Hu, R Salakhutdinov, B Perozzi Advances in Neural Information Processing Systems 35, 27347-27359, 2022 | 12 | 2022 |
Computing the statistical significance of optimized communities in networks J Palowitch Scientific Reports 9 (1), 1-10, 2019 | 9 | 2019 |
Graph generative model for benchmarking graph neural networks M Yoon, Y Wu, J Palowitch, B Perozzi, R Salakhutdinov arXiv preprint arXiv:2207.04396, 2022 | 7 | 2022 |
Recurrent graph neural networks for rumor detection in online forums D Huang, J Bartel, J Palowitch arXiv preprint arXiv:2108.03548, 2021 | 7 | 2021 |
Examining the effects of degree distribution and homophily in graph learning models M Yasir, J Palowitch, A Tsitsulin, L Tran-Thanh, B Perozzi arXiv preprint arXiv:2307.08881, 2023 | 5 | 2023 |
Test of Time: A Benchmark for Evaluating LLMs on Temporal Reasoning B Fatemi, M Kazemi, A Tsitsulin, K Malkan, J Yim, J Palowitch, S Seo, ... arXiv preprint arXiv:2406.09170, 2024 | 4 | 2024 |
De-Biasing Graph Embeddings via Metadata-Orthogonal Training JJ Palowitch US Patent App. 17/000,732, 2021 | 3 | 2021 |
Finding stable groups of cross-correlated features in multi-view data M Dewaskar, J Palowitch, M He, MI Love, A Nobel arXiv preprint arXiv:2009.05079, 2020 | 3 | 2020 |
Where do we go from here? multi-scale allocentric relational inferencefrom natural spatial descriptions T Paz-Argaman, J Palowitch, S Kulkarni, J Baldridge, R Tsarfaty Proceedings of the 18th Conference of the European Chapter of the …, 2024 | 2 | 2024 |