Real-world noisy image denoising: A new benchmark J Xu, H Li, Z Liang, D Zhang, L Zhang arXiv preprint arXiv:1804.02603, 2018 | 162 | 2018 |
A Hybrid l1-l0 Layer Decomposition Model for Tone Mapping Z Liang, J Xu, D Zhang, Z Cao, L Zhang Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2018 | 120 | 2018 |
Contrast enhancement by nonlinear diffusion filtering Z Liang, W Liu, R Yao IEEE Transactions on Image Processing 25 (2), 673-686, 2016 | 55 | 2016 |
A benchmark for edge-preserving image smoothing F Zhu, Z Liang, X Jia, L Zhang, Y Yu IEEE Transactions on Image Processing 28 (7), 3556-3570, 2019 | 54 | 2019 |
Cameranet: A two-stage framework for effective camera isp learning Z Liang, J Cai, Z Cao, L Zhang IEEE Transactions on Image Processing 30, 2248-2262, 2021 | 48 | 2021 |
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset G Chen, C Chen, S Guo, Z Liang, KYK Wong, L Zhang arXiv preprint arXiv:2103.14943, 2021 | 27 | 2021 |
A Text Attention Network for Spatial Deformation Robust Scene Text Image Super-resolution J Ma, Z Liang, L Zhang Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 14 | 2022 |
Joint Denoising and Demosaicking with Green Channel Prior for Real-world Burst Images S Guo, Z Liang, L Zhang arXiv preprint arXiv:2101.09870, 2021 | 14 | 2021 |
A Decoupled Learning Scheme for Real-World Burst Denoising from Raw Images Z Liang, S Guo, H Gu, H Zhang, L Zhang European Conference on Computer Vision, 150-166, 2020 | 10 | 2020 |