Deep-Learning Inversion of Seismic Data S Li, B Liu, Y Ren, Y Chen, S Yang, Y Wang, P Jiang IEEE Transactions on Geoscience and Remote Sensing 58 (3), 2135 - 2149, 2019 | 371 | 2019 |
Salient region detection by ufo: Uniqueness, focusness and objectness P Jiang, H Ling, J Yu, J Peng Proceedings of the IEEE international conference on computer vision, 1976-1983, 2013 | 371 | 2013 |
Deep learning inversion of electrical resistivity data B Liu, Q Guo, S Li, B Liu, Y Ren, Y Pang, X Guo, L Liu, P Jiang IEEE Transactions on Geoscience and Remote Sensing 58 (8), 5715-5728, 2020 | 169 | 2020 |
GPRInvNet: Deep learning-based ground-penetrating radar data inversion for tunnel linings B Liu, Y Ren, H Liu, H Xu, Z Wang, AG Cohn, P Jiang IEEE Transactions on Geoscience and Remote Sensing 59 (10), 8305-8325, 2021 | 113 | 2021 |
Deep-learning seismic full-waveform inversion for realistic structural models B Liu, S Yang, Y Ren, X Xu, P Jiang, Y Chen Geophysics 86 (1), R31-R44, 2021 | 98 | 2021 |
Generic promotion of diffusion-based salient object detection P Jiang, N Vasconcelos, J Peng Proceedings of the IEEE International Conference on Computer Vision, 217-225, 2015 | 67 | 2015 |
Dida: Disentangled synthesis for domain adaptation J Cao, O Katzir, P Jiang, D Lischinski, D Cohen-Or, C Tu, Y Li arXiv preprint arXiv:1805.08019, 2018 | 66 | 2018 |
A deep-learning-based multiple defect detection method for tunnel lining damages Y Dong, J Wang, Z Wang, X Zhang, Y Gao, Q Sui, P Jiang IEEE Access 7, 182643-182657, 2019 | 60 | 2019 |
Learning-based automatic breast tumor detection and segmentation in ultrasound images P Jiang, J Peng, G Zhang, E Cheng, V Megalooikonomou, H Ling 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 1587-1590, 2012 | 58 | 2012 |
Deep neural network-based permittivity inversions for ground penetrating radar data Y Ji, F Zhang, J Wang, Z Wang, P Jiang, H Liu, Q Sui IEEE Sensors Journal 21 (6), 8172-8183, 2021 | 48 | 2021 |
Automatic recognition of highway tunnel defects based on an improved U-Net model X Miao, J Wang, Z Wang, Q Sui, Y Gao, P Jiang IEEE Sensors Journal 19 (23), 11413-11423, 2019 | 40 | 2019 |
Scribble-Supervised Semantic Segmentation by Uncertainty Reduction on Neural Representation and Self-Supervision on Neural Eigenspace Z Pan, P Jiang, Y Wang, C Tu, AG Cohn Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2021 | 36 | 2021 |
GPRI2Net: A deep-neural-network-based ground penetrating radar data inversion and object identification framework for consecutive and long survey lines J Wang, H Liu, P Jiang, Z Wang, Q Sui, F Zhang IEEE Transactions on Geoscience and Remote Sensing 60, 1-20, 2021 | 35 | 2021 |
Building complex seismic velocity models for deep learning inversion Y Ren, L Nie, S Yang, P Jiang, Y Chen IEEE Access 9, 63767-63778, 2021 | 33 | 2021 |
Difnet: Semantic segmentation by diffusion networks P Jiang, F Gu, Y Wang, C Tu, B Chen Advances in Neural Information Processing Systems 31 (NeurIPS 2018) 31, 2018 | 33 | 2018 |
Defect segmentation: Mapping tunnel lining internal defects with ground penetrating radar data using a convolutional neural network S Yang, Z Wang, J Wang, AG Cohn, J Zhang, P Jiang, L Nie, Q Sui Construction and Building Materials 319, 125658, 2022 | 29 | 2022 |
Unsupervised deep learning for random noise attenuation of seismic data B Liu, J Yue, Z Zuo, X Xu, C Fu, S Yang, P Jiang IEEE Geoscience and Remote Sensing Letters 19, 1-5, 2021 | 29 | 2021 |
Arbitrarily-oriented tunnel lining defects detection from ground penetrating radar images using deep convolutional neural networks J Wang, J Zhang, AG Cohn, Z Wang, H Liu, W Kang, P Jiang, F Zhang, ... Automation in Construction 133, 104044, 2022 | 27 | 2022 |
Adaptive Convolution Neural Networks for Electrical Resistivity Inversion B Liu, Q Guo, K Wang, Y Pang, L Nie, P Jiang IEEE Sensors Journal 1 (1), 1, 2020 | 24 | 2020 |
Deep learning-based rebar clutters removal and defect echoes enhancement in GPR images J Wang, K Chen, H Liu, J Zhang, W Kang, S Li, P Jiang, Q Sui, Z Wang Ieee Access 9, 87207-87218, 2021 | 23 | 2021 |