Sicong Liu(刘思聪)
Cited by
Cited by
On-demand deep model compression for mobile devices: A usage-driven model selection framework
S Liu, Y Lin, Z Zhou, K Nan, H Liu, J Du
MobiSys-2018, 389-400, 2018
Deep model compression for mobile platforms: A survey
K Nan, S Liu, J Du, H Liu
Tsinghua Science and Technology-2018 24 (6), 677-693, 2019
Ubiear: Bringing location-independent sound awareness to the hard-of-hearing people with smartphones
L Sicong, Z Zimu, D Junzhao, S Longfei, J Han, X Wang
Ubicomp-2017-Distinguished Paper Award 1 (2), 1-21, 2017
Privacy Adversarial Network: Representation Learning for Mobile Data Privacy
S Liu, J Du, A Shrivastava, L Zhong
Ubicomp-2020 3 (4), 1-18, 2019
Poster: Mobiear-building an environment-independent acoustic sensing platform for the deaf using deep learning
S Liu, J Du
MobiSys-2016, 50-50, 2016
Energy-efficient algorithm to construct the information potential field in WSNs
S Liu, J Du, H Liu, R Li, X Yang, K Sha
IEEE Sensors Journal-2017(IF:3.301) 17 (12), 3822-3831, 2017
Better accuracy with quantified privacy: representations learned via reconstructive adversarial network
S Liu, A Shrivastava, J Du, L Zhong
arXiv preprint arXiv:1901.08730, 2019
Air pollution source estimation profiling via mobile sensor networks
X Yang, J Du, S Liu, R Li, H Liu
CITS-2016, 1-5, 2016
AdaDeep: A Usage-Driven, Automated Deep Model Compression Framework for Enabling Ubiquitous Intelligent Mobiles
S Liu, J Du, K Nan, A Wang, Y Lin
IEEE Transactions on Mobile Computing (TMC)-2020, 2020
SmartCare: energy-efficient long-term physical activity tracking using smartphones
H Liu, R Li, S Liu, S Tian, J Du
Tsinghua Science and Technology 20 (4), 348-363, 2015
Towards information-rich, logical dialogue systems with knowledge-enhanced neural models
H Wang, B Guo, W Wu, S Liu, Z Yu
Neurocomputing 465, 248-264, 2021
TL-SDD: A Transfer Learning-Based Method for Surface Defect Detection with Few Samples
ZY Jiahui Cheng, Bin Guo, Jiaqi Liu, Sicong Liu, Guangzhi Wu, Yueqi Sun
BigCom-2021, 2021
CrowdBlueNet: maximizing crowd data collection using bluetooth ad hoc networks
S Liu, J Du, X Yang, R Li, H Liu, K Sha
WASA-2016, 356-366, 2016
Lightweight construction of the information potential field in wireless sensor networks
J Du, S Liu, C Xu, K Wang, H Liu, K Sha
ICCCN-2014, 1-8, 2014
Decentralized Multi-AGV Task Allocation based on Multi-Agent Reinforcement Learning with Information Potential Field Rewards
M Li, B Guo, J Zhang, J Liu, S Liu, Z Yu, Z Li, L Xiang
2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems …, 2021
Context-aware Adaptive Surgery: A Fast and Effective Framework for Adaptative Model Partition
H Wang, B Guo, J Liu, S Liu, Y Wu, Z Yu
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous …, 2021
AdaSpring: Context-adaptive and Runtime-evolutionary Deep Model Compression for Mobile Applications
S Liu, B Guo, K Ma, Z Yu, J Du
Ubicomp-2021 5 (1), 1-22, 2021
Understanding sensor data using deep learning methods on resource-constrained edge devices
J Du, S Liu, Y Wei, H Liu, X Wang, K Nan
CWSN-2017, 139-152, 2017
CrowdDesigner: information-rich and personalized product description generation
Q Zhang, B Guo, S Liu, J Liu, Z Yu
Frontiers of Computer Science 16 (6), 1-3, 2022
CrowdHMT: Crowd Intelligence with the Deep Fusion of Human, Machine, and IoT
B Guo, Y Liu, S Liu, Z Yu, X Zhou
IEEE Internet of Things Journal, 2022
The system can't perform the operation now. Try again later.
Articles 1–20