Pytorch: An imperative style, high-performance deep learning library A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... Advances in neural information processing systems 32, 2019 | 29037 | 2019 |
Automatic differentiation in pytorch A Paszke, S Gross, S Chintala, G Chanan, E Yang, Z DeVito, Z Lin, ... | 11893 | 2017 |
Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences A Rives, J Meier, T Sercu, S Goyal, Z Lin, J Liu, D Guo, M Ott, CL Zitnick, ... Proceedings of the National Academy of Sciences 118 (15), e2016239118, 2021 | 915 | 2021 |
Intrinsic motivation and automatic curricula via asymmetric self-play S Sukhbaatar, Z Lin, I Kostrikov, G Synnaeve, A Szlam, R Fergus arXiv preprint arXiv:1703.05407, 2017 | 361 | 2017 |
Evolutionary-scale prediction of atomic-level protein structure with a language model Z Lin, H Akin, R Rao, B Hie, Z Zhu, W Lu, N Smetanin, R Verkuil, O Kabeli, ... Science 379 (6637), 1123-1130, 2023 | 244* | 2023 |
Episodic exploration for deep deterministic policies: An application to starcraft micromanagement tasks N Usunier, G Synnaeve, Z Lin, S Chintala arXiv preprint arXiv:1609.02993, 2016 | 171 | 2016 |
Torchcraft: a library for machine learning research on real-time strategy games G Synnaeve, N Nardelli, A Auvolat, S Chintala, T Lacroix, Z Lin, F Richoux, ... arXiv preprint arXiv:1611.00625, 2016 | 132 | 2016 |
Deep motif: Visualizing genomic sequence classifications J Lanchantin, R Singh, Z Lin, Y Qi arXiv preprint arXiv:1605.01133, 2016 | 92 | 2016 |
Deepcloak: Masking deep neural network models for robustness against adversarial samples J Gao, B Wang, Z Lin, W Xu, Y Qi arXiv preprint arXiv:1702.06763, 2017 | 90 | 2017 |
Learning inverse folding from millions of predicted structures C Hsu, R Verkuil, J Liu, Z Lin, B Hie, T Sercu, A Lerer, A Rives International Conference on Machine Learning, 8946-8970, 2022 | 81 | 2022 |
PyTorch: An Imperative Style A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... High-performance deep learning library 12, 1912 | 71 | 1912 |
MUST-CNN: a multilayer shift-and-stitch deep convolutional architecture for sequence-based protein structure prediction Z Lin, J Lanchantin, Y Qi Proceedings of the AAAI Conference on Artificial Intelligence 30 (1), 2016 | 46 | 2016 |
Stardata: A starcraft ai research dataset Z Lin, J Gehring, V Khalidov, G Synnaeve Proceedings of the AAAI Conference on Artificial Intelligence and …, 2017 | 42 | 2017 |
Value propagation networks N Nardelli, G Synnaeve, Z Lin, P Kohli, PHS Torr, N Usunier arXiv preprint arXiv:1805.11199, 2018 | 29 | 2018 |
Forward modeling for partial observation strategy games-a starcraft defogger G Synnaeve, Z Lin, J Gehring, D Gant, V Mella, V Khalidov, N Carion, ... Advances in Neural Information Processing Systems 31, 2018 | 29 | 2018 |
Growing action spaces G Farquhar, L Gustafson, Z Lin, S Whiteson, N Usunier, G Synnaeve International Conference on Machine Learning, 3040-3051, 2020 | 26 | 2020 |
PyTorch: an imperative style, high-performance deep learning library. arXiv [cs. LG] A Paszke, S Gross, F Massa, A Lerer, J Bradbury, G Chanan, T Killeen, ... arXiv preprint arXiv:1912.01703, 2019 | 16 | 2019 |
An analysis of model-based heuristic search techniques for StarCraft combat scenarios D Churchill, Z Lin, G Synnaeve Proceedings of the AAAI Conference on Artificial Intelligence and …, 2017 | 14 | 2017 |
Deep generative models create new and diverse protein structures Z Lin, T Sercu, Y LeCun, A Rives Machine Learning for Structural Biology Workshop, NeurIPS, 2021 | 12 | 2021 |
Neural potts model T Sercu, R Verkuil, J Meier, B Amos, Z Lin, C Chen, J Liu, Y LeCun, ... bioRxiv, 2021.04. 08.439084, 2021 | 11 | 2021 |