Knowledge graph enhanced neural collaborative recommendation L Sang, M Xu, S Qian, X Wu Expert systems with applications 164, 113992, 2021 | 77 | 2021 |
Noise augmented double-stream graph convolutional networks for image captioning L Wu, M Xu, L Sang, T Yao, T Mei IEEE Transactions on Circuits and Systems for Video Technology 31 (8), 3118-3127, 2020 | 51 | 2020 |
Context-dependent propagating-based video recommendation in multimodal heterogeneous information networks L Sang, M Xu, S Qian, M Martin, P Li, X Wu IEEE Transactions on Multimedia 23, 2019-2032, 2020 | 48 | 2020 |
Knowledge graph enhanced neural collaborative filtering with residual recurrent network L Sang, M Xu, S Qian, X Wu Neurocomputing 454, 417-429, 2021 | 24 | 2021 |
Multi-modal multi-view Bayesian semantic embedding for community question answering L Sang, M Xu, SS Qian, X Wu Neurocomputing 334, 44-58, 2019 | 23 | 2019 |
AAANE: Attention-based adversarial autoencoder for multi-scale network embedding L Sang, M Xu, S Qian, X Wu Advances in Knowledge Discovery and Data Mining: 23rd Pacific-Asia …, 2019 | 14 | 2019 |
WEFEST: word embedding feature extension for short text classification L Sang, F Xie, X Liu, X Wu 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW …, 2016 | 11 | 2016 |
Adversarial heterogeneous graph neural network for robust recommendation L Sang, M Xu, S Qian, X Wu IEEE Transactions on Computational Social Systems 10 (5), 2660-2671, 2023 | 8 | 2023 |
CETN: Contrast-enhanced Through Network for CTR Prediction H Li, L Sang, Y Zhang, X Zhang, Y Zhang arXiv preprint arXiv:2312.09715, 2023 | 4 | 2023 |
Exploring the individuality and collectivity of intents behind interactions for graph collaborative filtering Y Zhang, L Sang, Y Zhang Proceedings of the 47th International ACM SIGIR Conference on Research and …, 2024 | 3 | 2024 |
TF4CTR: Twin Focus Framework for CTR Prediction via Adaptive Sample Differentiation H Li, Y Zhang, Y Zhang, L Sang, Y Yang arXiv preprint arXiv:2405.03167, 2024 | 2 | 2024 |
Neural Collaborative Recommendation with Knowledge Graph L Sang, L Li 2020 IEEE International Conference on Knowledge Graph (ICKG), 203-210, 2020 | 1 | 2020 |
Multi-view denoising contrastive learning for bundle recommendation L Sang, Y Hu, Y Zhang, Y Zhang Applied Intelligence, 1-15, 2024 | | 2024 |
Semantic-enhanced Heterogeneous Graph Contrastive Learning for Recommendation L Sang, F Song, Y Wang, Y Zhang, Y Zhang | | 2024 |
Towards similar alignment and unique uniformity in collaborative filtering L Sang, Y Zhang, Y Zhang, H Li, Y Zhang Expert Systems with Applications, 125346, 2024 | | 2024 |
Federated Prototype-based Contrastive Learning for Privacy-Preserving Cross-domain Recommendation L Wang, Q Zhang, L Sang, Q Wu, M Xu arXiv preprint arXiv:2409.03294, 2024 | | 2024 |
CETN: Contrast-enhanced Through Network for Click-Through Rate Prediction H Li, L Sang, Y Zhang, X Zhang, Y Zhang ACM Transactions on Information Systems, 2024 | | 2024 |
AdaGIN: Adaptive Graph Interaction Network for Click-Through Rate Prediction L Sang, H Li, Y Zhang, Y Zhang, Y Yang ACM Transactions on Information Systems, 2024 | | 2024 |
SimCEN: Simple Contrast-enhanced Network for CTR Prediction H Li, L Sang, Y Zhang, Y Zhang ACM Multimedia 2024, 2024 | | 2024 |
High-Order Fusion Graph Contrastive Learning for Recommendation Y Zhang, L Sang, Y Zhang, Y Zhang arXiv preprint arXiv:2407.19692, 2024 | | 2024 |