关注
Simon Stepputtis
标题
引用次数
引用次数
年份
Language-conditioned imitation learning for robot manipulation tasks
S Stepputtis, J Campbell, M Phielipp, S Lee, C Baral, H Ben Amor
Advances in Neural Information Processing Systems 33, 13139-13150, 2020
1372020
A system for learning continuous human-robot interactions from human-human demonstrations
D Vogt, S Stepputtis, S Grehl, B Jung, HB Amor
2017 IEEE International Conference on Robotics and Automation (ICRA), 2882-2889, 2017
892017
Probabilistic multimodal modeling for human-robot interaction tasks
J Campbell, S Stepputtis, HB Amor
arXiv preprint arXiv:1908.04955, 2019
302019
One-shot learning of human–robot handovers with triadic interaction meshes
D Vogt, S Stepputtis, B Jung, HB Amor
Autonomous Robots 42, 1053-1065, 2018
302018
Learning interactive behaviors for musculoskeletal robots using bayesian interaction primitives
J Campbell, A Hitzmann, S Stepputtis, S Ikemoto, K Hosoda, HB Amor
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2019
182019
A system for imitation learning of contact-rich bimanual manipulation policies
S Stepputtis, M Bandari, S Schaal, HB Amor
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2022
152022
Theory of mind for multi-agent collaboration via large language models
H Li, YQ Chong, S Stepputtis, J Campbell, D Hughes, M Lewis, K Sycara
arXiv preprint arXiv:2310.10701, 2023
142023
Modularity through attention: Efficient training and transfer of language-conditioned policies for robot manipulation
Y Zhou, S Sonawani, M Phielipp, S Stepputtis, HB Amor
arXiv preprint arXiv:2212.04573, 2022
122022
Improved exploration through latent trajectory optimization in deep deterministic policy gradient
KS Luck, M Vecerik, S Stepputtis, HB Amor, J Scholz
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2019
102019
Explainable action advising for multi-agent reinforcement learning
Y Guo, J Campbell, S Stepputtis, R Li, D Hughes, F Fang, K Sycara
2023 IEEE International Conference on Robotics and Automation (ICRA), 5515-5521, 2023
92023
Concept learning for interpretable multi-agent reinforcement learning
R Zabounidis, J Campbell, S Stepputtis, D Hughes, KP Sycara
Conference on Robot Learning, 1828-1837, 2023
92023
Extrinsic dexterity through active slip control using deep predictive models
S Stepputtis, Y Yang, HB Amor
2018 IEEE International Conference on Robotics and Automation (ICRA), 3180-3185, 2018
92018
Learning human-robot interactions from human-human demonstrations (with applications in lego rocket assembly)
D Vogt, S Stepputtis, R Weinhold, B Jung, HB Amor
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids …, 2016
92016
Imitation learning of robot policies by combining language, vision and demonstration
S Stepputtis, J Campbell, M Phielipp, C Baral, HB Amor
arXiv preprint arXiv:1911.11744, 2019
62019
Learning modular language-conditioned robot policies through attention
Y Zhou, S Sonawani, M Phielipp, H Ben Amor, S Stepputtis
Autonomous Robots 47 (8), 1013-1033, 2023
52023
Characterizing out-of-distribution error via optimal transport
Y Lu, Y Qin, R Zhai, A Shen, K Chen, Z Wang, S Kolouri, S Stepputtis, ...
Advances in Neural Information Processing Systems 36, 2024
42024
Explaining agent behavior with large language models
X Zhang, Y Guo, S Stepputtis, K Sycara, J Campbell
arXiv preprint arXiv:2309.10346, 2023
42023
Theory of mind as intrinsic motivation for multi-agent reinforcement learning
I Oguntola, J Campbell, S Stepputtis, K Sycara
arXiv preprint arXiv:2307.01158, 2023
42023
Sample-Efficient Learning of Novel Visual Concepts
S Bhagat*, S Stepputtis*, J Campbell, K Sycara
Conference on Lifelong Learning Agents (CoLLAs), 2023
42023
Robust Hierarchical Scene Graph Generation
C Zhang, S Stepputtis, J Campbell, K Sycara, Y Xie
NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023
22023
系统目前无法执行此操作,请稍后再试。
文章 1–20