Ask me anything: Dynamic memory networks for natural language processing A Kumar, O Irsoy, P Ondruska, M Iyyer, J Bradbury, I Gulrajani, V Zhong, ... International conference on machine learning, 1378-1387, 2016 | 1245 | 2016 |
Maximum entropy deep inverse reinforcement learning M Wulfmeier, P Ondruska, I Posner arXiv preprint arXiv:1507.04888, 2015 | 293 | 2015 |
Deep tracking: Seeing beyond seeing using recurrent neural networks P Ondruska, I Posner Thirtieth AAAI conference on artificial intelligence, 2016 | 168 | 2016 |
Mobilefusion: Real-time volumetric surface reconstruction and dense tracking on mobile phones P Ondrúška, P Kohli, S Izadi IEEE transactions on visualization and computer graphics 21 (11), 1251-1258, 2015 | 135 | 2015 |
Large-scale cost function learning for path planning using deep inverse reinforcement learning M Wulfmeier, D Rao, DZ Wang, P Ondruska, I Posner The International Journal of Robotics Research 36 (10), 1073-1087, 2017 | 110 | 2017 |
One thousand and one hours: Self-driving motion prediction dataset J Houston, G Zuidhof, L Bergamini, Y Ye, L Chen, A Jain, S Omari, ... arXiv preprint arXiv:2006.14480, 2020 | 103 | 2020 |
Deep tracking in the wild: End-to-end tracking using recurrent neural networks J Dequaire, P Ondrúška, D Rao, D Wang, I Posner The International Journal of Robotics Research 37 (4-5), 492-512, 2018 | 91 | 2018 |
Deep tracking: Seeing beyond seeing using recurrent neural networks P Ondrúška, I Posner Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence …, 2016 | 81 | 2016 |
Lyft level 5 av dataset 2019 R Kesten, M Usman, J Houston, T Pandya, K Nadhamuni, A Ferreira, ... urlhttps://level5. lyft. com/dataset, 2019 | 77 | 2019 |
End-to-end tracking and semantic segmentation using recurrent neural networks P Ondruska, J Dequaire, DZ Wang, I Posner arXiv preprint arXiv:1604.05091, 2016 | 66 | 2016 |
Deep inverse reinforcement learning M Wulfmeier, P Ondruska, I Posner CoRR, abs/1507.04888, 2015 | 62 | 2015 |
Lyft level 5 perception dataset 2020 R Kesten, M Usman, J Houston, T Pandya, K Nadhamuni, A Ferreira, ... | 45 | 2019 |
Probabilistic attainability maps: Efficiently predicting driver-specific electric vehicle range P Ondruska, I Posner 2014 IEEE Intelligent Vehicles Symposium Proceedings, 1169-1174, 2014 | 39 | 2014 |
Scheduled perception for energy-efficient path following P Ondrúška, C Gurău, L Marchegiani, CH Tong, I Posner 2015 IEEE International Conference on Robotics and Automation (ICRA), 4799-4806, 2015 | 34 | 2015 |
Lyft level 5 av dataset 2019. urlhttps R Kesten, M Usman, J Houston, T Pandya, K Nadhamuni, A Ferreira, ... level5. lyft. com/dataset 2 (3), 6, 2019 | 33 | 2019 |
The route not taken: Driver-centric estimation of electric vehicle range P Ondruska, I Posner Twenty-Fourth International Conference on Automated Planning and Scheduling, 2014 | 33 | 2014 |
Deep tracking on the move: Learning to track the world from a moving vehicle using recurrent neural networks J Dequaire, D Rao, P Ondruska, D Wang, I Posner arXiv preprint arXiv:1609.09365, 2016 | 23 | 2016 |
Simnet: Learning reactive self-driving simulations from real-world observations L Bergamini, Y Ye, O Scheel, L Chen, C Hu, L Del Pero, B Osiński, ... 2021 IEEE International Conference on Robotics and Automation (ICRA), 5119-5125, 2021 | 13 | 2021 |
Collaborative augmented reality on smartphones via life-long city-scale maps L Platinsky, M Szabados, F Hlasek, R Hemsley, L Del Pero, A Pancik, ... 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR …, 2020 | 8 | 2020 |
Method and system for creating a virtual 3D model P Ondruska, L Platinsky US Patent 10,460,511, 2019 | 6 | 2019 |