TensorFlow: Large-scale machine learning on heterogeneous systems M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... | 32284* | 2015 |
{TensorFlow}: a system for {Large-Scale} machine learning M Abadi, P Barham, J Chen, Z Chen, A Davis, J Dean, M Devin, ... 12th USENIX symposium on operating systems design and implementation (OSDI …, 2016 | 26854 | 2016 |
Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ... arXiv preprint arXiv:2312.11805, 2023 | 2217 | 2023 |
Fine-tuning language models from human preferences DM Ziegler, N Stiennon, J Wu, TB Brown, A Radford, D Amodei, ... arXiv preprint arXiv:1909.08593, 2019 | 1403 | 2019 |
Scaling language models: Methods, analysis & insights from training gopher JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ... arXiv preprint arXiv:2112.11446, 2021 | 1075 | 2021 |
Improving language models by retrieving from trillions of tokens S Borgeaud, A Mensch, J Hoffmann, T Cai, E Rutherford, K Millican, ... International conference on machine learning, 2206-2240, 2022 | 1013 | 2022 |
Ethical and social risks of harm from language models L Weidinger, J Mellor, M Rauh, C Griffin, J Uesato, PS Huang, M Cheng, ... arXiv preprint arXiv:2112.04359, 2021 | 916 | 2021 |
Taxonomy of risks posed by language models L Weidinger, J Uesato, M Rauh, C Griffin, PS Huang, J Mellor, A Glaese, ... Proceedings of the 2022 ACM Conference on Fairness, Accountability, and …, 2022 | 552 | 2022 |
Tensorflow: A system for large-scale machine learning A Martín, B Paul, C Jianmin, C Zhifeng, D Andy, D Jeffrey, D Matthieu, ... 12th USENIX symposium on operating systems design and implementation (OSDI …, 2016 | 544 | 2016 |
Red teaming language models with language models E Perez, S Huang, F Song, T Cai, R Ring, J Aslanides, A Glaese, ... arXiv preprint arXiv:2202.03286, 2022 | 525 | 2022 |
TensorFlow: large-scale machine learning on heterogeneous distributed systems (2016) M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... arXiv preprint arXiv:1603.04467 52, 2015 | 525 | 2015 |
Invertible finite elements for robust simulation of large deformation G Irving, J Teran, R Fedkiw Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer …, 2004 | 516 | 2004 |
Improving alignment of dialogue agents via targeted human judgements A Glaese, N McAleese, M Trębacz, J Aslanides, V Firoiu, T Ewalds, ... arXiv preprint arXiv:2209.14375, 2022 | 446 | 2022 |
Reward learning from human preferences and demonstrations in atari B Ibarz, J Leike, T Pohlen, G Irving, S Legg, D Amodei Advances in neural information processing systems 31, 2018 | 431 | 2018 |
Tensorflow: Large-scale machine learning on heterogeneous distributed systems. CoRR abs/1603.04467 (2016) M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... arXiv preprint arXiv:1603.04467, 2016 | 372 | 2016 |
TensorFlow: Large-scale machine learning on heterogeneous systems (2015), software available from tensorflow. org M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... | 299 | 2019 |
Robust quasistatic finite elements and flesh simulation J Teran, E Sifakis, G Irving, R Fedkiw Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer …, 2005 | 290 | 2005 |
12th USENIX symposium on operating systems design and implementation (OSDI 16) M Abadi, P Barham, J Chen, Z Chen, A Davis, J Dean, M Devin, ... Savannah, GA, 265-283, 2016 | 272 | 2016 |
Accelerating large language model decoding with speculative sampling C Chen, S Borgeaud, G Irving, JB Lespiau, L Sifre, J Jumper arXiv preprint arXiv:2302.01318, 2023 | 247 | 2023 |
Efficient simulation of large bodies of water by coupling two and three dimensional techniques G Irving, E Guendelman, F Losasso, R Fedkiw ACM SIGGRAPH 2006 Papers, 805-811, 2006 | 238 | 2006 |