关注
Fuli Feng
标题
引用次数
引用次数
年份
Neural graph collaborative filtering
X Wang, X He, M Wang, F Feng, TS Chua
Proceedings of the 42nd international ACM SIGIR conference on Research and …, 2019
32132019
Self-supervised graph learning for recommendation
J Wu, X Wang, F Feng, X He, L Chen, J Lian, X Xie
Proceedings of the 44th international ACM SIGIR conference on research and …, 2021
11412021
Bias and debias in recommender system: A survey and future directions
J Chen, H Dong, X Wang, F Feng, M Wang, X He
ACM Transactions on Information Systems 41 (3), 1-39, 2023
8592023
Temporal relational ranking for stock prediction
F Feng, X He, X Wang, C Luo, Y Liu, TS Chua
ACM Transactions on Information Systems (TOIS) 37 (2), 1-30, 2019
4272019
Depression detection via harvesting social media: A multimodal dictionary learning solution.
G Shen, J Jia, L Nie, F Feng, C Zhang, T Hu, TS Chua, W Zhu
IJCAI, 3838-3844, 2017
4212017
Causal intervention for leveraging popularity bias in recommendation
Y Zhang, F Feng, X He, T Wei, C Song, G Ling, Y Zhang
Proceedings of the 44th international ACM SIGIR conference on research and …, 2021
4032021
Tallrec: An effective and efficient tuning framework to align large language model with recommendation
K Bao, J Zhang, Y Zhang, W Wang, F Feng, X He
Proceedings of the 17th ACM Conference on Recommender Systems, 1007-1014, 2023
3042023
Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system
T Wei, F Feng, J Chen, Z Wu, J Yi, X He
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data …, 2021
2882021
Enhancing stock movement prediction with adversarial training
F Feng, H Chen, X He, J Ding, M Sun, TS Chua
arXiv preprint arXiv:1810.09936, 2018
2812018
Tem: Tree-enhanced embedding model for explainable recommendation
X Wang, X He, F Feng, L Nie, TS Chua
Proceedings of the 2018 world wide web conference, 1543-1552, 2018
2742018
Graph adversarial training: Dynamically regularizing based on graph structure
F Feng, X He, J Tang, TS Chua
IEEE Transactions on Knowledge and Data Engineering 33 (6), 2493-2504, 2019
2432019
Denoising implicit feedback for recommendation
W Wang, F Feng, X He, L Nie, TS Chua
Proceedings of the 14th ACM international conference on web search and data …, 2021
2322021
Neural multi-task recommendation from multi-behavior data
C Gao, X He, D Gan, X Chen, F Feng, Y Li, TS Chua, D Jin
2019 IEEE 35th international conference on data engineering (ICDE), 1554-1557, 2019
2252019
TAT-QA: A question answering benchmark on a hybrid of tabular and textual content in finance
F Zhu, W Lei, Y Huang, C Wang, S Zhang, J Lv, F Feng, TS Chua
arXiv preprint arXiv:2105.07624, 2021
2232021
Neurostylist: Neural compatibility modeling for clothing matching
X Song, F Feng, J Liu, Z Li, L Nie, J Ma
Proceedings of the 25th ACM international conference on Multimedia, 753-761, 2017
2012017
Deconfounded video moment retrieval with causal intervention
X Yang, F Feng, W Ji, M Wang, TS Chua
Proceedings of the 44th international ACM SIGIR conference on research and …, 2021
1872021
Clicks can be cheating: Counterfactual recommendation for mitigating clickbait issue
W Wang, F Feng, X He, H Zhang, TS Chua
Proceedings of the 44th International ACM SIGIR Conference on Research and …, 2021
1762021
Deconfounded recommendation for alleviating bias amplification
W Wang, F Feng, X He, X Wang, TS Chua
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data …, 2021
1682021
Neural compatibility modeling with attentive knowledge distillation
X Song, F Feng, X Han, X Yang, W Liu, L Nie
The 41st International ACM SIGIR conference on research & development in …, 2018
1512018
Is chatgpt fair for recommendation? evaluating fairness in large language model recommendation
J Zhang, K Bao, Y Zhang, W Wang, F Feng, X He
Proceedings of the 17th ACM Conference on Recommender Systems, 993-999, 2023
1482023
系统目前无法执行此操作,请稍后再试。
文章 1–20