关注
Maja Rudolph
Maja Rudolph
Senior Research Scientist, Bosch Center for AI
在 cs.columbia.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Edward: A library for probabilistic modeling, inference, and criticism
D Tran, A Kucukelbir, AB Dieng, M Rudolph, D Liang, DM Blei
arXiv preprint arXiv:1610.09787, 2016
3322016
Dynamic embeddings for language evolution
M Rudolph, D Blei
Proceedings of the 2018 World Wide Web Conference, 1003-1011, 2018
1512018
Exponential family embeddings
M Rudolph, F Ruiz, S Mandt, D Blei
Neural Information Processing Systems, 2016
1412016
Placing language in an integrated understanding system: Next steps toward human-level performance in neural language models
JL McClelland, F Hill, M Rudolph, J Baldridge, H Schütze
Proceedings of the National Academy of Sciences 117 (42), 25966-25974, 2020
572020
Structured embedding models for grouped data
M Rudolph, F Ruiz, S Athey, D Blei
Neural Information Processing Systems, 2017
492017
Neural Transformation Learning for Deep Anomaly Detection Beyond Images
C Qiu, T Pfrommer, M Kloft, S Mandt, M Rudolph
ICML 2021, 2021
412021
Extending machine language models toward human-level language understanding
JL McClelland, F Hill, M Rudolph, J Baldridge, H Schütze
arXiv preprint arXiv:1912.05877, 2019
352019
Dynamic Bernoulli embeddings for language evolution
M Rudolph, D Blei
arXiv preprint arXiv:1703.08052, 2017
352017
Objective variables for probabilistic revenue maximization in second-price auctions with reserve
MR Rudolph, JG Ellis, DM Blei
Proceedings of the 25th International Conference on World Wide Web, 1113-1122, 2016
182016
Latent outlier exposure for anomaly detection with contaminated data
C Qiu, A Li, M Kloft, M Rudolph, S Mandt
International Conference on Machine Learning, 18153-18167, 2022
132022
Modeling irregular time series with continuous recurrent units
M Schirmer, M Eltayeb, S Lessmann, M Rudolph
International Conference on Machine Learning, 19388-19405, 2022
92022
Raising the Bar in Graph-level Anomaly Detection
C Qiu, M Kloft, S Mandt, M Rudolph
IJCAI 2022, 2022
82022
Complex-valued autoencoders for object discovery
S Löwe, P Lippe, M Rudolph, M Welling
arXiv preprint arXiv:2204.02075, 2022
82022
Edward: A library for probabilistic modeling, inference, and criticism. arXiv 2016
D Tran, A Kucukelbir, AB Dieng, M Rudolph, D Liang, DM Blei
arXiv preprint arXiv:1610.09787, 2016
82016
Detecting anomalies within time series using local neural transformations
T Schneider, C Qiu, M Kloft, DA Latif, S Staab, S Mandt, M Rudolph
arXiv preprint arXiv:2202.03944, 2022
72022
A joint model for who-to-follow and what-to-view recommendations on behance
MR Rudolph, M Hoffman, A Hertzmann
Proceedings of the 25th International Conference Companion on World Wide Web …, 2016
32016
Deterministic inference of neural stochastic differential equations
A Look, C Qiu, M Rudolph, J Peters, M Kandemir
arXiv preprint arXiv:2006.08973, 2020
22020
History Marginalization Improves Forecasting in Variational Recurrent Neural Networks
C Qiu, S Mandt, M Rudolph
Entropy 23 (12), 1563, 2021
12021
Variational dynamic mixtures
C Qiu, S Mandt, M Rudolph
arXiv preprint arXiv:2010.10403, 2020
12020
Deep Anomaly Detection on Tennessee Eastman Process Data
F Hartung, BJ Franks, T Michels, D Wagner, P Liznerski, S Reithermann, ...
arXiv preprint arXiv:2303.05904, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20