Equivariant flow-based sampling for lattice gauge theory G Kanwar, MS Albergo, D Boyda, K Cranmer, DC Hackett, S Racaniere, ... Physical Review Letters 125 (12), 121601, 2020 | 235 | 2020 |
Sampling using gauge equivariant flows D Boyda, G Kanwar, S Racanière, DJ Rezende, MS Albergo, K Cranmer, ... Physical Review D 103 (7), 074504, 2021 | 161 | 2021 |
Interacting electrons in graphene: Fermi velocity renormalization and optical response T Stauber, P Parida, M Trushin, MV Ulybyshev, DL Boyda, J Schliemann Physical review letters 118 (26), 266801, 2017 | 82 | 2017 |
Flow-based sampling for fermionic lattice field theories MS Albergo, G Kanwar, S Racanière, DJ Rezende, JM Urban, D Boyda, ... Physical Review D 104 (11), 114507, 2021 | 60 | 2021 |
New approach to canonical partition functions computation in lattice QCD at finite baryon density VG Bornyakov, DL Boyda, VA Goy, AV Molochkov, A Nakamura, ... Physical Review D 95 (9), 094506, 2017 | 46 | 2017 |
Sign problem in finite density lattice QCD VA Goy, V Bornyakov, D Boyda, A Molochkov, A Nakamura, A Nikolaev, ... Progress of Theoretical and Experimental Physics 2017 (3), 031D01, 2017 | 45 | 2017 |
Many-body effects on graphene conductivity: Quantum Monte Carlo calculations DL Boyda, VV Braguta, MI Katsnelson, MV Ulybyshev Physical Review B 94 (8), 085421, 2016 | 44 | 2016 |
Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions R Abbott, MS Albergo, D Boyda, K Cranmer, DC Hackett, G Kanwar, ... Physical Review D 106 (7), 074506, 2022 | 42 | 2022 |
Flow-based sampling for multimodal distributions in lattice field theory DC Hackett, CC Hsieh, MS Albergo, D Boyda, JW Chen, KF Chen, ... arXiv preprint arXiv:2107.00734, 2021 | 36 | 2021 |
Introduction to normalizing flows for lattice field theory MS Albergo, D Boyda, DC Hackett, G Kanwar, K Cranmer, S Racaniere, ... arXiv preprint arXiv:2101.08176, 2021 | 36 | 2021 |
Flow-based sampling in the lattice Schwinger model at criticality MS Albergo, D Boyda, K Cranmer, DC Hackett, G Kanwar, S Racanière, ... Physical Review D 106 (1), 014514, 2022 | 31 | 2022 |
Applications of flow models to the generation of correlated lattice QCD ensembles R Abbott, A Botev, D Boyda, DC Hackett, G Kanwar, S Racanière, ... Physical Review D 109 (9), 094514, 2024 | 30 | 2024 |
Lee-Yang zeros in lattice QCD for searching phase transition points M Wakayama, VG Bornyakov, DL Boyda, VA Goy, H Iida, AV Molochkov, ... Physics Letters B 793, 227-233, 2019 | 30 | 2019 |
Applications of machine learning to lattice quantum field theory D Boyda, S Calì, S Foreman, L Funcke, DC Hackett, Y Lin, G Aarts, ... arXiv preprint arXiv:2202.05838, 2022 | 27 | 2022 |
Aspects of scaling and scalability for flow-based sampling of lattice QCD R Abbott, MS Albergo, A Botev, D Boyda, K Cranmer, DC Hackett, ... The European Physical Journal A 59 (11), 257, 2023 | 25 | 2023 |
Finding the deconfinement temperature in lattice Yang-Mills theories from outside the scaling window with machine learning DL Boyda, MN Chernodub, NV Gerasimeniuk, VA Goy, SD Liubimov, ... Physical Review D 103 (1), 014509, 2021 | 23 | 2021 |
Sampling QCD field configurations with gauge-equivariant flow models R Abbott, MS Albergo, A Botev, D Boyda, K Cranmer, DC Hackett, ... arXiv preprint arXiv:2208.03832, 2022 | 20 | 2022 |
Numerical simulation of graphene in an external magnetic field DL Boyda, VV Braguta, SN Valgushev, MI Polikarpov, MV Ulybyshev Physical Review B 89 (24), 245404, 2014 | 19 | 2014 |
Normalizing flows for lattice gauge theory in arbitrary space-time dimension R Abbott, MS Albergo, A Botev, D Boyda, K Cranmer, DC Hackett, ... arXiv preprint arXiv:2305.02402, 2023 | 18 | 2023 |
Novel approach to deriving the canonical generating functional in lattice QCD at a finite chemical potential DL Boyda, VG Bornyakov, VA Goy, VI Zakharov, AV Molochkov, ... JETP letters 104, 657-661, 2016 | 16 | 2016 |