Follow
Sifan Liu
Sifan Liu
Verified email at stanford.edu - Homepage
Title
Cited by
Cited by
Year
Asymptotics for sketching in least squares regression
E Dobriban, S Liu
Advances in Neural Information Processing Systems 32, 3675-3685, 2019
62*2019
Ridge regression: Structure, cross-validation, and sketching
S Liu, E Dobriban
Eighth International Conference on Learning Representations (ICLR 2020), 2019
552019
Global and individualized community detection in inhomogeneous multilayer networks
S Chen, S Liu, Z Ma
The Annals of Statistics 50 (5), 2664-2693, 2022
322022
How to reduce dimension with PCA and random projections?
F Yang, S Liu, E Dobriban, DP Woodruff
IEEE Transactions on Information Theory 67 (12), 8154-8189, 2021
282021
Optimal Iterative Sketching Methods with the Subsampled Randomized Hadamard Transform
J Lacotte, S Liu, E Dobriban, M Pilanci
Advances in Neural Information Processing Systems 33, 2020
24*2020
Quasi-Monte Carlo Quasi-Newton in Variational Bayes
S Liu, AB Owen
Journal of Machine Learning Research 22 (243), 1-23, 2021
17*2021
Preintegration via Active Subspace
S Liu, AB Owen
SIAM Journal on Numerical Analysis 61 (2), 495-514, 2023
82023
Statistical challenges in tracking the evolution of SARS-CoV-2
L Cappello, J Kim, S Liu, JA Palacios
Statistical Science 37 (2), 162-182, 2022
42022
Selective Inference with Distributed Data
S Liu, S Panigrahi
arXiv preprint arXiv:2301.06162, 2023
22023
Black-box Selective Inference via Bootstrapping
S Liu, J Markovic, J Taylor
arXiv preprint arXiv:2203.14504, 2022
22022
Conditional Quasi-Monte Carlo with Constrained Active Subspaces
S Liu
arXiv preprint arXiv:2212.13232, 2022
12022
Langevin Quasi-Monte Carlo
S Liu
Advances in Neural Information Processing Systems 36, 2024
2024
An Exact Sampler for Inference after Polyhedral Model Selection
S Liu
arXiv preprint arXiv:2308.10346, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–13