关注
Yongyuan Liang
标题
引用次数
引用次数
年份
Who is the strongest enemy? towards optimal and efficient evasion attacks in deep rl
Y Sun, R Zheng, Y Liang, F Huang
arXiv preprint arXiv:2106.05087, 2021
652021
Efficient adversarial training without attacking: Worst-case-aware robust reinforcement learning
Y Liang, Y Sun, R Zheng, F Huang
Advances in Neural Information Processing Systems 35, 22547-22561, 2022
442022
Certifiably robust policy learning against adversarial multi-agent communication
Y Sun, R Zheng, P Hassanzadeh, Y Liang, S Feizi, S Ganesh, F Huang
The Eleventh International Conference on Learning Representations, 2023
132023
Drm: Mastering visual reinforcement learning through dormant ratio minimization
G Xu*, R Zheng*, Y Liang*, X Wang, Z Yuan, T Ji, Y Luo, X Liu, J Yuan, ...
arXiv preprint arXiv:2310.19668, 2023
122023
Certifiably robust policy learning against adversarial communication in multi-agent systems
Y Sun, R Zheng, P Hassanzadeh, Y Liang, S Feizi, S Ganesh, F Huang
arXiv preprint arXiv:2206.10158, 2022
112022
Parallel knowledge transfer in multi-agent reinforcement learning
Y Liang, B Li
arXiv preprint arXiv:2003.13085, 2020
92020
InstantNet: Automated generation and deployment of instantaneously switchable-precision networks
Y Fu, Z Yu, Y Zhang, Y Jiang, C Li, Y Liang, M Jiang, Z Wang, Y Lin
2021 58th ACM/IEEE Design Automation Conference (DAC), 757-762, 2021
52021
Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations
Y Liang, Y Sun, R Zheng, X Liu, T Sandholm, F Huang, S McAleer
arXiv preprint arXiv:2307.12062, 2023
42023
Fdnas: Improving data privacy and model diversity in automl
C Zhang, Y Liang, X Yuan, L Cheng
arXiv preprint arXiv:2011.03372, 2020
32020
Premier-taco: Pretraining multitask representation via temporal action-driven contrastive loss
R Zheng, Y Liang, X Wang, S Ma, H Daumé III, H Xu, J Langford, ...
arXiv preprint arXiv:2402.06187, 2024
22024
Beyond Worst-case Attacks: Robust RL with Adaptive Defense via Non-dominated Policies
X Liu, C Deng, Y Sun, Y Liang, F Huang
arXiv preprint arXiv:2402.12673, 2024
12024
Premier-TACO is a Few-Shot Policy Learner: Pretraining Multitask Representation via Temporal Action-Driven Contrastive Loss
R Zheng, Y Liang, X Wang, S Ma, H Daumé III, H Xu, J Langford, ...
Forty-first International Conference on Machine Learning, 2024
12024
Make-An-Agent: A Generalizable Policy Network Generator with Behavior-Prompted Diffusion
Y Liang, T Xu, K Hu, G Jiang, F Huang, H Xu
arXiv preprint arXiv:2407.10973, 2024
2024
Is poisoning a real threat to LLM alignment? Maybe more so than you think
P Pathmanathan, S Chakraborty, X Liu, Y Liang, F Huang
arXiv preprint arXiv:2406.12091, 2024
2024
ACE: Off-Policy Actor-Critic with Causality-Aware Entropy Regularization
T Ji*, Y Liang*, Y Zeng, Y Luo, G Xu, J Guo, R Zheng, F Huang, F Sun, ...
arXiv preprint arXiv:2402.14528, 2024
2024
Certifiably Robust Multi-Agent Reinforcement Learning against Adversarial Communication
Y Sun, R Zheng, P Hassanzadeh, Y Liang, S Feizi, S Ganesh, F Huang
The Eleventh International Conference on Learning Representations, 2023
2023
Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations
Y Liang, Y Sun, R Zheng, X Liu, B Eysenbach, T Sandholm, F Huang, ...
arXiv preprint arXiv:2307.12062, 2023
2023
is a Few-Shot Policy Learner: Pretraining Multitask Representation via Temporal Action-Driven Contrastive Loss
R Zheng, Y Liang, X Wang, S Ma, H Daumé III, H Xu, J Langford, ...
系统目前无法执行此操作,请稍后再试。
文章 1–18