Follow
Edvin Listo Zec
Edvin Listo Zec
RISE Research Institutes of Sweden, KTH Royal Institute of Technology
Verified email at ri.se - Homepage
Title
Cited by
Cited by
Year
Decentralized federated learning of deep neural networks on non-iid data
N Onoszko, G Karlsson, O Mogren, E Listo Zec
2021 ICML Workshop on Federated Learning for User Privacy and Data …, 2021
482021
Recurrent Conditional Generative Adversarial Networks for Autonomous Driving Sensor Modelling
H Arnelid, E Listo Zec, N Mohammadiha
2019 IEEE Intelligent Transportation Systems Conference (ITSC), 1613-1618, 2019
412019
Scaling Federated Learning for Fine-tuning of Large Language Models
A Hilmkil, S Callh, M Barbieri, LR Sütfeld, E Listo Zec, O Mogren
International Conference on Applications of Natural Language to Information …, 2021
342021
Specialized federated learning using a mixture of experts
E Listo Zec, O Mogren, J Martinsson, LR Sütfeld, D Gillblad
arXiv preprint arXiv:2010.02056, 2020
29*2020
Statistical sensor modelling for autonomous driving using autoregressive input-output HMMs
E Listo Zec, N Mohammadiha, A Schliep
2018 21st International Conference on Intelligent Transportation Systems …, 2018
272018
Financing solutions for circular business models: Exploring the role of business ecosystems and artificial intelligence
S Fallahi, AC Mellquist, O Mogren, E Listo Zec, P Algurén, L Hallquist
Business Strategy and the Environment 32 (6), 3233-3248, 2023
232023
Adversarial representation learning for private speech generation
D Ericsson, A Östberg, E Listo Zec, J Martinsson, O Mogren
2020 ICML workshop on Self-supervision in Audio and Speech, 2020
162020
Recurrent Conditional GANs for Time Series Sensor Modelling
E Listo Zec, H Arnelid, N Mohammadiha
2019 ICML Time Series Workshop, 2019
14*2019
Adversarial representation learning for synthetic replacement of private attributes
J Martinsson, E Listo Zec, D Gillblad, O Mogren
2021 IEEE International Conference on Big Data (Big Data), 1291-1299, 2020
122020
Decentralized adaptive clustering of deep nets is beneficial for client collaboration
EL Zec, E Ekblom, M Willbo, O Mogren, S Girdzijauskas
International Workshop on Trustworthy Federated Learning, 59-71, 2022
92022
EFFGAN: Ensembles of fine-tuned federated GANs
E Ekblom, E Listo Zec, O Mogren
2022 IEEE International Conference on Big Data (Big Data), 884-892, 2022
72022
Federated learning for performance prediction in multi-operator environments
X Lan, J Taghia, F Moradi, MA Khoshkholghi, E Listo Zec, O Mogren, ...
ITU Journal on Future and Evolving Technologies, 2023
42023
Adaptive Expert Models for Federated Learning
M Isaksson, E Listo Zec, R Cöster, D Gillblad, S Girdzijauskas
International Workshop on Trustworthy Federated Learning, 1-16, 2022
4*2022
Efficient Node Selection in Private Personalized Decentralized Learning
E Listo Zec, J Östman, O Mogren, D Gillblad
Northern Lights Deep Learning Conference, 244-250, 2024
32024
Financing Solutions in Future Circular Business Ecosystems
S Fallahi, AC Mellquist, O Mogren, E Listo Zec, P Algurén
22021
Impacts of Color and Texture Distortions on Earth Observation Data in Deep Learning
M Willbo, A Pirinen, J Martinsson, E Listo Zec, O Mogren, M Nilsson
arXiv preprint arXiv:2403.04385, 2024
12024
On the effects of similarity metrics in decentralized deep learning under distributional shift
E Listo Zec, T Hagander, E Ihre-Thomason, S Girdzijauskas
arXiv preprint arXiv:2409.10720, 2024
2024
Concept-aware clustering for decentralized deep learning under temporal shift
E Listo Zec, E Klefbom, M Toftås, MJ Willbo, O Mogren
ICML'23: Federated Learning and Analytics in Practice: Algorithms, Systems …, 2023
2023
Residual value prediction using deep learning
E Listo Zec, O Mogren, AC Mellquist, S Fallahi, P Algurén
2022 IEEE International Conference on Big Data (Big Data), 4560-4567, 2022
2022
Grammatical gender in Swedish is predictable using recurrent neural networks
E Listo Zec, O Mogren
Proceedings of the 15th Swecog Conference, 2019
2019
The system can't perform the operation now. Try again later.
Articles 1–20