Pali: A jointly-scaled multilingual language-image model X Chen, X Wang, S Changpinyo, AJ Piergiovanni, P Padlewski, D Salz, ... arXiv preprint arXiv:2209.06794, 2022 | 587 | 2022 |
Dynamic Pricing in Ridesharing Platforms S Banerjee, R Johari, C Riquelme ACM SIGecom Exchanges 15 (1), 65-70, 2016 | 557* | 2016 |
Scaling vision with sparse mixture of experts C Riquelme, J Puigcerver, B Mustafa, M Neumann, R Jenatton, ... Advances in Neural Information Processing Systems 34, 8583-8595, 2021 | 499 | 2021 |
Scaling vision transformers to 22 billion parameters M Dehghani, J Djolonga, B Mustafa, P Padlewski, J Heek, J Gilmer, ... International Conference on Machine Learning, 7480-7512, 2023 | 445 | 2023 |
Google research football: A novel reinforcement learning environment K Kurach, A Raichuk, P Stańczyk, M Zając, O Bachem, L Espeholt, ... Proceedings of the AAAI conference on artificial intelligence 34 (04), 4501-4510, 2020 | 402 | 2020 |
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling C Riquelme, G Tucker, J Snoek Sixth International Conference on Learning Representations, ICLR 2018., 2018 | 396 | 2018 |
A large-scale study of representation learning with the visual task adaptation benchmark X Zhai, J Puigcerver, A Kolesnikov, P Ruyssen, C Riquelme, M Lucic, ... arXiv preprint arXiv:1910.04867, 2019 | 347 | 2019 |
Multimodal contrastive learning with limoe: the language-image mixture of experts B Mustafa, C Riquelme, J Puigcerver, R Jenatton, N Houlsby Advances in Neural Information Processing Systems 35, 9564-9576, 2022 | 149 | 2022 |
From sparse to soft mixtures of experts J Puigcerver, C Riquelme, B Mustafa, N Houlsby arXiv preprint arXiv:2308.00951, 2023 | 87 | 2023 |
The visual task adaptation benchmark X Zhai, J Puigcerver, A Kolesnikov, P Ruyssen, C Riquelme, M Lucic, ... | 77 | 2019 |
Human Interaction with Recommendation Systems S Schmit, C Riquelme The 21st International Conference on Artificial Intelligence and Statistics …, 2018 | 66 | 2018 |
Scalable transfer learning with expert models J Puigcerver, C Riquelme, B Mustafa, C Renggli, AS Pinto, S Gelly, ... arXiv preprint arXiv:2009.13239, 2020 | 64 | 2020 |
Learning to merge tokens in vision transformers C Renggli, AS Pinto, N Houlsby, B Mustafa, J Puigcerver, C Riquelme arXiv preprint arXiv:2202.12015, 2022 | 57 | 2022 |
Deep bayesian bandits showdown C Riquelme, G Tucker, J Snoek International conference on learning representations 9, 2018 | 56 | 2018 |
Practical and consistent estimation of f-divergences P Rubenstein, O Bousquet, J Djolonga, C Riquelme, IO Tolstikhin Advances in Neural Information Processing Systems 32, 2019 | 49 | 2019 |
Stable lm 2 1.6 b technical report M Bellagente, J Tow, D Mahan, D Phung, M Zhuravinskyi, R Adithyan, ... arXiv preprint arXiv:2402.17834, 2024 | 35 | 2024 |
On last-layer algorithms for classification: Decoupling representation from uncertainty estimation N Brosse, C Riquelme, A Martin, S Gelly, É Moulines arXiv preprint arXiv:2001.08049, 2020 | 35 | 2020 |
Online Active Linear Regression via Thresholding C Riquelme, R Johari, B Zhang AAAI-17, Thirty-First AAAI Conference on Artificial Intelligence., 2017 | 35 | 2017 |
The Beta-VAE's Implicit Prior MD Hoffman, C Riquelme, M Johnson Bayesian Deep Learning Workshop. Neural Information Processing Systems, NIPS …, 2017 | 22 | 2017 |
Which model to transfer? finding the needle in the growing haystack C Renggli, AS Pinto, L Rimanic, J Puigcerver, C Riquelme, C Zhang, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 20 | 2022 |