Follow
Daniel Kang
Daniel Kang
Verified email at illinois.edu - Homepage
Title
Cited by
Cited by
Year
NoScope: Optimizing Neural Network Queries over Video at Scale
D Kang, J Emmons, F Abuzaid, P Bailis, M Zaharia
Proceedings of the VLDB Endowment 10 (11), 1586-1597, 2017
540*2017
DAWNBench: An End-to-End Deep Learning Benchmark and Competition
C Coleman, D Narayanan, D Kang, T Zhao, J Zhang, L Nardi, P Bailis, ...
NIPS ML Systems Workshop, 2017
3852017
MLPerf Training Benchmark
P Mattson, C Cheng, C Coleman, G Diamos, P Micikevicius, D Patterson, ...
arXiv preprint arXiv:1910.01500, 2019
3292019
BlazeIt: Optimizing Declarative Aggregation and Limit Queries for Neural Network-based Video Analytics
D Kang, P Bailis, M Zaharia
PVLDB 13 (4), 2019
228*2019
Testing Robustness Against Unforeseen Adversaries
D Kang, Y Sun, D Hendrycks, T Brown, J Steinhardt
arXiv preprint arXiv:1908.08016, 2019
187*2019
Exploiting programmatic behavior of llms: Dual-use through standard security attacks
D Kang, X Li, I Stoica, C Guestrin, M Zaharia, T Hashimoto
2024 IEEE Security and Privacy Workshops (SPW), 132-143, 2024
1652024
Analysis of dawnbench, a time-to-accuracy machine learning performance benchmark
C Coleman, D Kang, D Narayanan, L Nardi, T Zhao, J Zhang, P Bailis, ...
ACM SIGOPS Operating Systems Review 53 (1), 14-25, 2019
1412019
Network Offloading Policies for Cloud Robotics: a Learning-based Approach
S Chinchali, A Sharma, J Harrison, A Elhafsi, D Kang, E Pergament, ...
arXiv preprint arXiv:1902.05703, 2019
1292019
Model Assertions for Monitoring and Improving ML Models
D Kang, D Raghavan, P Bailis, M Zaharia
MLSys, 2020
118*2020
Improved Natural Language Generation via Loss Truncation
D Kang, T Hashimoto
ACL, 2020
972020
Q-diffusion: Quantizing diffusion models
X Li, Y Liu, L Lian, H Yang, Z Dong, D Kang, S Zhang, K Keutzer
Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023
902023
LIT: Learned Intermediate Representation Training for Model Compression
A Koratana, D Kang, P Bailis, M Zaharia
International Conference on Machine Learning, 3509-3518, 2019
82*2019
Identifying and mitigating the security risks of generative ai
C Barrett, B Boyd, E Bursztein, N Carlini, B Chen, J Choi, AR Chowdhury, ...
Foundations and Trends® in Privacy and Security 6 (1), 1-52, 2023
582023
Jointly Optimizing Preprocessing and Inference for DNN-based Visual Analytics
D Kang, A Mathur, T Veeramacheneni, P Bailis, M Zaharia
arXiv preprint arXiv:2007.13005, 2020
552020
Removing RLHF Protections in GPT-4 via Fine-Tuning
Q Zhan, R Fang, R Bindu, A Gupta, T Hashimoto, D Kang
arXiv preprint arXiv:2311.05553, 2023
542023
GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding
H Zeng, T Hashimoto, DD Kang, DK Gifford
Bioinformatics 32 (4), 490-496, 2016
502016
TASTI: Semantic Indexes for Machine Learning-based Queries over Unstructured Data
D Kang, J Guibas, PD Bailis, T Hashimoto, M Zaharia
Proceedings of the 2022 International Conference on Management of Data, 1934 …, 2022
43*2022
Approximate Selection with Guarantees using Proxies
D Kang, E Gan, P Bailis, T Hashimoto, M Zaharia
PVLDB, 2020
352020
Scaling up Trustless DNN Inference with Zero-Knowledge Proofs
D Kang, T Hashimoto, I Stoica, Y Sun
arXiv preprint arXiv:2210.08674, 2022
292022
Willump: A Statistically-Aware End-to-end Optimizer for Machine Learning Inference
P Kraft, D Kang, D Narayanan, S Palkar, P Bailis, M Zaharia
MLSys, 2020
292020
The system can't perform the operation now. Try again later.
Articles 1–20