Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding Z Li, Y Zhao, J Han, Y Su, R Jiao, X Wen, D Pei Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data …, 2021 | 273* | 2021 |
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications J Han, J Cen, L Wu, Z Li, X Kong, R Jiao, Z Yu, T Xu, F Wu, Z Wang, H Xu, ... arXiv preprint arXiv:2403.00485, 2024 | 90* | 2024 |
Equivariant Graph Mechanics Networks with Constraints W Huang*, J Han*, Y Rong, T Xu, F Sun, J Huang International Conference on Learning Representations (ICLR 2022), 2022 | 74 | 2022 |
Energy-motivated equivariant pretraining for 3d molecular graphs R Jiao, J Han, W Huang, Y Rong, Y Liu AAAI Conference on Artificial Intelligence (AAAI 2023), 2022 | 52* | 2022 |
Crystal structure prediction by joint equivariant diffusion R Jiao, W Huang, P Lin, J Han, P Chen, Y Lu, Y Liu Advances in Neural Information Processing Systems 36, 2024 | 46* | 2024 |
Learning Physical Dynamics with Subequivariant Graph Neural Networks J Han, W Huang, H Ma, J Li, JB Tenenbaum, C Gan Advances in Neural Information Processing Systems (NeurIPS 2022), 2022 | 39 | 2022 |
Smoothing matters: Momentum transformer for domain adaptive semantic segmentation R Chen, Y Rong, S Guo, J Han, F Sun, T Xu, W Huang arXiv preprint arXiv:2203.07988, 2022 | 24 | 2022 |
Equivariant Graph Hierarchy-Based Neural Networks J Han, W Huang, T Xu, Y Rong Advances in Neural Information Processing Systems (NeurIPS 2022), 2022 | 24 | 2022 |
Equivariant graph neural operator for modeling 3d dynamics M Xu, J Han, A Lou, J Kossaifi, A Ramanathan, K Azizzadenesheli, ... arXiv preprint arXiv:2401.11037, 2024 | 11 | 2024 |
Subequivariant Graph Reinforcement Learning in 3D Environments R Chen*, J Han*, F Sun, W Huang International Conference on Machine Learning (ICML 2023), 2023 | 4 | 2023 |
Tfg: Unified training-free guidance for diffusion models H Ye, H Lin, J Han, M Xu, S Liu, Y Liang, J Ma, J Zou, S Ermon arXiv preprint arXiv:2409.15761, 2024 | 3 | 2024 |
RelBench: A benchmark for deep learning on relational databases J Robinson, R Ranjan, W Hu, K Huang, J Han, A Dobles, M Fey, ... arXiv preprint arXiv:2407.20060, 2024 | 3 | 2024 |
Structure-Aware DropEdge Toward Deep Graph Convolutional Networks J Han, W Huang, Y Rong, T Xu, F Sun, J Huang IEEE Transactions on Neural Networks and Learning Systems, 2023 | 2 | 2023 |
Geometric Trajectory Diffusion Models J Han, M Xu, A Lou, H Ye, S Ermon arXiv preprint arXiv:2410.13027, 2024 | 1 | 2024 |
Img2cad: Reverse engineering 3d cad models from images through vlm-assisted conditional factorization Y You, MA Uy, J Han, R Thomas, H Zhang, S You, L Guibas arXiv preprint arXiv:2408.01437, 2024 | 1 | 2024 |
-PO: Generalizing Preference Optimization with -divergence Minimization J Han, M Jiang, Y Song, J Leskovec, S Ermon, M Xu arXiv preprint arXiv:2410.21662, 2024 | | 2024 |
CPSample: Classifier Protected Sampling for Guarding Training Data During Diffusion J Kazdan, H Sun, J Han, F Petersen, S Ermon arXiv preprint arXiv:2409.07025, 2024 | | 2024 |
Energy-Free Guidance of Geometric Diffusion Models for 3D Molecule Inverse Design S Nagaraj, J Han, A Garg, M Xu ICML'24 Workshop ML for Life and Material Science: From Theory to Industry …, 2024 | | 2024 |
Improving Equivariant Graph Neural Networks on Large Geometric Graphs via Virtual Nodes Learning Y Zhang, J Cen, J Han, Z Zhang, J Zhou, W Huang Forty-first International Conference on Machine Learning, 2024 | | 2024 |