Grad-cam: Visual explanations from deep networks via gradient-based localization RR Selvaraju, M Cogswell, A Das, R Vedantam, D Parikh, D Batra Proceedings of the IEEE international conference on computer vision, 618-626, 2017 | 14971 | 2017 |
Reducing overfitting in deep networks by decorrelating representations M Cogswell, F Ahmed, R Girshick, L Zitnick, D Batra arXiv preprint arXiv:1511.06068, 2015 | 409 | 2015 |
Diverse beam search: Decoding diverse solutions from neural sequence models AK Vijayakumar, M Cogswell, RR Selvaraju, Q Sun, S Lee, D Crandall, ... arXiv preprint arXiv:1610.02424, 2016 | 400 | 2016 |
Why m heads are better than one: Training a diverse ensemble of deep networks S Lee, S Purushwalkam, M Cogswell, D Crandall, D Batra arXiv preprint arXiv:1511.06314, 2015 | 256 | 2015 |
Diverse beam search for improved description of complex scenes A Vijayakumar, M Cogswell, R Selvaraju, Q Sun, S Lee, D Crandall, ... Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018 | 172 | 2018 |
Stochastic multiple choice learning for training diverse deep ensembles S Lee, S Purushwalkam Shiva Prakash, M Cogswell, V Ranjan, ... Advances in Neural Information Processing Systems 29, 2016 | 172 | 2016 |
Proceedings of the IEEE international conference on computer vision RR Selvaraju, M Cogswell, A Das, R Vedantam, D Parikh, D Batra IEEE, 2017 | 154 | 2017 |
Grad-CAM: Visual explanations from deep networks via gradient-based localization. arXiv 2016 RR Selvaraju, M Cogswell, A Das, R Vedantam, D Parikh, D Batra arXiv preprint arXiv:1610.02391, 0 | 55 | |
Emergence of compositional language with deep generational transmission M Cogswell, J Lu, S Lee, D Parikh, D Batra arXiv preprint arXiv:1904.09067, 2019 | 50 | 2019 |
Running students' software tests against each others' code: new life for an old" gimmick" SH Edwards, Z Shams, M Cogswell, RC Senkbeil Proceedings of the 43rd ACM technical symposium on Computer Science …, 2012 | 42 | 2012 |
Combining the best of graphical models and convnets for semantic segmentation M Cogswell, X Lin, S Purushwalkam, D Batra arXiv preprint arXiv:1412.4313, 2014 | 22 | 2014 |
Trigger hunting with a topological prior for trojan detection X Hu, X Lin, M Cogswell, Y Yao, S Jha, C Chen arXiv preprint arXiv:2110.08335, 2021 | 16 | 2021 |
Dialog without dialog data: Learning visual dialog agents from VQA data M Cogswell, J Lu, R Jain, S Lee, D Parikh, D Batra Advances in Neural Information Processing Systems 33, 19988-19999, 2020 | 8 | 2020 |
Improving users' mental model with attentiondirected counterfactual edits K Alipour, A Ray, X Lin, M Cogswell, JP Schulze, Y Yao, GT Burachas Applied AI Letters 2 (4), e47, 2021 | 4 | 2021 |
Unpacking Large Language Models with Conceptual Consistency P Sahu, M Cogswell, Y Gong, A Divakaran arXiv preprint arXiv:2209.15093, 2022 | 3 | 2022 |
Knowing what VQA does not: pointing to error-inducing regions to improve explanation helpfulness A Ray, M Cogswell, X Lin, K Alipour, A Divakaran, Y Yao, G Burachas arXiv preprint arXiv 2103, 2021 | 3 | 2021 |
ABHISHEK DAS AK DAS, E JORA | 3 | 2011 |
Generating and evaluating explanations of attended and errorinducing input regions for VQA models A Ray, M Cogswell, X Lin, K Alipour, A Divakaran, Y Yao, G Burachas Applied AI Letters 2 (4), e51, 2021 | 2 | 2021 |
Comprehension Based Question Answering using Bloom's Taxonomy P Sahu, M Cogswell, S Rutherford-Quach, A Divakaran arXiv preprint arXiv:2106.04653, 2021 | 2 | 2021 |
Probing Conceptual Understanding of Large Visual-Language Models MC Schiappa, M Cogswell, A Divakaran, YS Rawat arXiv preprint arXiv:2304.03659, 2023 | 1 | 2023 |