关注
Aleksandar Botev
Aleksandar Botev
Google Deepmind
在 google.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
A scalable laplace approximation for neural networks
H Ritter, A Botev, D Barber
6th international conference on learning representations, ICLR 2018 …, 2018
5132018
Online structured laplace approximations for overcoming catastrophic forgetting
H Ritter, A Botev, D Barber
Advances in Neural Information Processing Systems 31, 2018
3832018
Practical Gauss-Newton optimisation for deep learning
A Botev, H Ritter, D Barber
International Conference on Machine Learning, 557-565, 2017
2852017
Hamiltonian generative networks
P Toth, DJ Rezende, A Jaegle, S Racanière, A Botev, I Higgins
arXiv preprint arXiv:1909.13789, 2019
2602019
Nesterov's accelerated gradient and momentum as approximations to regularised update descent
A Botev, G Lever, D Barber
2017 International joint conference on neural networks (IJCNN), 1899-1903, 2017
1812017
Griffin: Mixing gated linear recurrences with local attention for efficient language models
S De, SL Smith, A Fernando, A Botev, G Cristian-Muraru, A Gu, R Haroun, ...
arXiv preprint arXiv:2402.19427, 2024
1052024
Better, faster fermionic neural networks
JS Spencer, D Pfau, A Botev, WMC Foulkes
arXiv preprint arXiv:2011.07125, 2020
572020
Disentangling by subspace diffusion
D Pfau, I Higgins, A Botev, S Racanière
Advances in Neural Information Processing Systems 33, 17403-17415, 2020
392020
Nesterov's accelerated gradient and momentum as approximations to regularised update descent
A Botev, G Lever, D Barber
arXiv preprint arXiv:1607.01981, 2016
362016
Deep transformers without shortcuts: Modifying self-attention for faithful signal propagation
B He, J Martens, G Zhang, A Botev, A Brock, SL Smith, YW Teh
arXiv preprint arXiv:2302.10322, 2023
352023
Deep learning without shortcuts: Shaping the kernel with tailored rectifiers
G Zhang, A Botev, J Martens
arXiv preprint arXiv:2203.08120, 2022
352022
Complementary Sum Sampling for Likelihood Approximation in Large Scale Classification
A Botev, B Zheng, D Barber
AISTATS 54, 1030-1038, 2017
342017
Aspects of scaling and scalability for flow-based sampling of lattice QCD
R Abbott, MS Albergo, A Botev, D Boyda, K Cranmer, DC Hackett, ...
The European Physical Journal A 59 (11), 257, 2023
312023
Which priors matter? benchmarking models for learning latent dynamics
A Botev, A Jaegle, P Wirnsberger, D Hennes, I Higgins
arXiv preprint arXiv:2111.05458, 2021
312021
Sampling QCD field configurations with gauge-equivariant flow models
R Abbott, MS Albergo, A Botev, D Boyda, K Cranmer, DC Hackett, ...
arXiv preprint arXiv:2208.03832, 2022
222022
Normalizing flows for lattice gauge theory in arbitrary space-time dimension
R Abbott, MS Albergo, A Botev, D Boyda, K Cranmer, DC Hackett, ...
arXiv preprint arXiv:2305.02402, 2023
212023
Applications of flow models to the generation of correlated lattice QCD ensembles
R Abbott, A Botev, D Boyda, DC Hackett, G Kanwar, S Racanière, ...
Physical Review D 109 (9), 094514, 2024
112024
Recurrentgemma: Moving past transformers for efficient open language models
A Botev, S De, SL Smith, A Fernando, GC Muraru, R Haroun, L Berrada, ...
arXiv preprint arXiv:2404.07839, 2024
112024
The Gauss-Newton matrix for deep learning models and its applications
A Botev
UCL (University College London), 2020
112020
Symetric: Measuring the quality of learnt hamiltonian dynamics inferred from vision
I Higgins, P Wirnsberger, A Jaegle, A Botev
Advances in Neural Information Processing Systems 34, 25591-25605, 2021
62021
系统目前无法执行此操作,请稍后再试。
文章 1–20