Stochastic Calculus for Fractional Brow-nian Motion and Applications F Biagini Probability and its Applications (New York)/SpringerVerlag London, Ltd, 2008 | 1313 | 2008 |
Stochastic calculus for fractional Brownian motion I. Theory TE Duncan, Y Hu, B Pasik-Duncan SIAM Journal on Control and Optimization 38 (2), 582-612, 2000 | 817 | 2000 |
Fractional white noise calculus and applications to finance Y Hu, B Øksendal Infinite dimensional analysis, quantum probability and related topics 6 (01 …, 2003 | 785 | 2003 |
Parameter estimation for fractional Ornstein–Uhlenbeck processes Y Hu, D Nualart Statistics & probability letters 80 (11-12), 1030-1038, 2010 | 347 | 2010 |
Integral transformations and anticipative calculus for fractional Brownian motions Y Hu American Mathematical Soc., 2005 | 251 | 2005 |
A delayed Black and Scholes formula M Arriojas, Y Hu, SE Mohammed, G Pap Stochastic Analysis and Applications 25 (2), 471-492, 2007 | 224 | 2007 |
Discrete-time approximations of stochastic delay equations: the Milstein scheme Y Hu, SEA Mohammed, F Yan the Annals of probability 32 (1A), 265-314, 2004 | 161 | 2004 |
Stochastic heat equation driven by fractional noise and local time Y Hu, D Nualart Probability Theory and Related Fields 143 (1), 285-328, 2009 | 159 | 2009 |
Renormalized self-intersection local time for fractional Brownian motion Y Hu, D Nualart | 159 | 2005 |
Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency Y Hu, J Huang, D Nualart, S Tindel | 145 | 2015 |
Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter Y Hu, D Nualart, H Zhou Statistical Inference for Stochastic Processes 22, 111-142, 2019 | 131 | 2019 |
Semi-implicit Euler-Maruyama scheme for stiff stochastic equations Y Hu Stochastic Analysis and Related Topics V: The Silivri Workshop, 1994, 183-202, 1996 | 130 | 1996 |
Least squares estimator for Ornstein–Uhlenbeck processes driven by α-stable motions Y Hu, H Long Stochastic Processes and their applications 119 (8), 2465-2480, 2009 | 119 | 2009 |
Heat equations with fractional white noise potentials Y Hu Applied Mathematics and Optimization 43, 221-243, 2001 | 118 | 2001 |
Feynman–Kac formula for heat equation driven by fractional white noise Y Hu, D Nualart, J Song | 113 | 2011 |
Backward stochastic differential equation driven by fractional Brownian motion Y Hu, S Peng SIAM Journal on Control and Optimization 48 (3), 1675-1700, 2009 | 111 | 2009 |
Differential equations driven by Hölder continuous functions of order greater than 1/2 Y Hu, D Nualart Stochastic Analysis and Applications: The Abel Symposium 2005, 399-413, 2007 | 111 | 2007 |
Optimal time to invest when the price processes are geometric Brownian motions Y Hu, B Øksendal Finance and Stochastics 2 (3), 295-310, 1998 | 110 | 1998 |
Analysis on Gaussian spaces Y Hu World Scientific, 2016 | 109 | 2016 |
Rough path analysis via fractional calculus Y Hu, D Nualart Transactions of the American Mathematical Society 361 (5), 2689-2718, 2009 | 92 | 2009 |