关注
Weibin Wu
Weibin Wu
在 mail.sysu.edu.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Boosting the transferability of adversarial samples via attention
W Wu, Y Su, X Chen, S Zhao, I King, MR Lyu, YW Tai
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
622020
Improving the transferability of adversarial samples with adversarial transformations
W Wu, Y Su, MR Lyu, I King
Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2021
382021
Towards global explanations of convolutional neural networks with concept attribution
W Wu, Y Su, X Chen, S Zhao, I King, MR Lyu, YW Tai
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020
342020
Deep validation: Toward detecting real-world corner cases for deep neural networks
W Wu, H Xu, S Zhong, MR Lyu, I King
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems …, 2019
322019
Improving adversarial transferability via neuron attribution-based attacks
J Zhang, W Wu, J Huang, Y Huang, W Wang, Y Su, MR Lyu
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
192022
NV-DNN: towards fault-tolerant DNN systems with N-version programming
H Xu, Z Chen, W Wu, Z Jin, S Kuo, M Lyu
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems …, 2019
182019
A personalized limb rehabilitation training system for stroke patients
W Wu, D Wang, T Wang, M Liu
2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), 1924 …, 2016
102016
MTTM: Metamorphic Testing for Textual Content Moderation Software
W Wang, J Huang, W Wu, J Zhang, Y Huang, S Li, P He, M Lyu
arXiv preprint arXiv:2302.05706, 2023
12023
Improving the Transferability of Adversarial Samples by Path-Augmented Method
J Zhang, J Huang, W Wang, Y Li, W Wu, X Wang, Y Su, MR Lyu
arXiv preprint arXiv:2303.15735, 2023
2023
Transferable Adversarial Attacks on Vision Transformers with Token Gradient Regularization
J Zhang, Y Huang, W Wu, MR Lyu
arXiv preprint arXiv:2303.15754, 2023
2023
On the Robustness and Interpretability of Deep Learning Models
W Wu
PQDT-Global, 2021
2021
Supplementary Materials: Towards Global Explanations of Convolutional Neural Networks with Concept Attribution
W Wu, Y Su, X Chen, S Zhao, I King, MR Lyu, YW Tai
系统目前无法执行此操作,请稍后再试。
文章 1–12