Machine learning based mobile malware detection using highly imbalanced network traffic Z Chen, Q Yan, H Han, S Wang, L Peng, L Wang, B Yang Information Sciences 433, 346-364, 2018 | 203 | 2018 |
Automatic design of hierarchical Takagi–Sugeno type fuzzy systems using evolutionary algorithms Y Chen, B Yang, A Abraham, L Peng IEEE Transactions on Fuzzy Systems 15 (3), 385-397, 2007 | 173 | 2007 |
Data gravitation based classification L Peng, B Yang, Y Chen, A Abraham Information Sciences 179 (6), 809-819, 2009 | 147 | 2009 |
A mobile malware detection method using behavior features in network traffic S Wang, Z Chen, Q Yan, B Yang, L Peng, Z Jia Journal of Network and Computer Applications 133, 15-25, 2019 | 136 | 2019 |
Gaussian distribution based oversampling for imbalanced data classification Y Xie, M Qiu, H Zhang, L Peng, Z Chen IEEE Transactions on Knowledge and Data Engineering 34 (2), 667-679, 2020 | 92 | 2020 |
A new approach for imbalanced data classification based on data gravitation L Peng, H Zhang, B Yang, Y Chen Information Sciences 288, 347-373, 2014 | 90 | 2014 |
Trafficav: An effective and explainable detection of mobile malware behavior using network traffic S Wang, Z Chen, L Zhang, Q Yan, B Yang, L Peng, Z Jia 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), 1-6, 2016 | 85 | 2016 |
Traffic classification using probabilistic neural networks R Sun, B Yang, L Peng, Z Chen, L Zhang, S Jing 2010 Sixth International Conference on Natural Computation 4, 1914-1919, 2010 | 78 | 2010 |
Ranking-based biased learning swarm optimizer for large-scale optimization H Deng, L Peng, H Zhang, B Yang, Z Chen Information Sciences 493, 120-137, 2019 | 67 | 2019 |
Deep and broad URL feature mining for android malware detection S Wang, Z Chen, Q Yan, K Ji, L Peng, B Yang, M Conti Information Sciences 513, 600-613, 2020 | 64 | 2020 |
Effective packet number for early stage internet traffic identification L Peng, B Yang, Y Chen Neurocomputing 156, 252-267, 2015 | 59 | 2015 |
Effectiveness of statistical features for early stage internet traffic identification L Peng, B Yang, Y Chen, Z Chen International Journal of Parallel Programming 44, 181-197, 2016 | 58 | 2016 |
Imbalanced traffic identification using an imbalanced data gravitation-based classification model L Peng, H Zhang, Y Chen, B Yang Computer Communications 102, 177-189, 2017 | 55 | 2017 |
Online hybrid traffic classifier for Peer-to-Peer systems based on network processors Z Chen, B Yang, Y Chen, A Abraham, C Grosan, L Peng Applied Soft Computing 9 (2), 685-694, 2009 | 47 | 2009 |
Exchange rate forecasting using flexible neural trees Y Chen, L Peng, A Abraham International symposium on neural networks, 518-523, 2006 | 35 | 2006 |
Flexible neural trees based early stage identification for IP traffic Z Chen, L Peng, C Gao, B Yang, Y Chen, J Li Soft Computing 21, 2035-2046, 2017 | 33 | 2017 |
Imbalanced learning based on adaptive weighting and Gaussian function synthesizing with an application on Android malware detection Y Pang, L Peng, Z Chen, B Yang, H Zhang Information Sciences 484, 95-112, 2019 | 31 | 2019 |
Effective detection of mobile malware behavior based on explainable deep neural network A Yan, Z Chen, H Zhang, L Peng, Q Yan, MU Hassan, C Zhao, B Yang Neurocomputing 453, 482-492, 2021 | 30 | 2021 |
Traffic labeller: collecting internet traffic samples with accurate application information P Lizhi, Z Hongli, Y Bo, C Yuehui, W Tong China Communications 11 (1), 69-78, 2014 | 27 | 2014 |
A fast feature weighting algorithm of data gravitation classification L Peng, H Zhang, H Zhang, B Yang Information Sciences 375, 54-78, 2017 | 25 | 2017 |