julien perolat
julien perolat
DeepMind
Verified email at google.com
Title
Cited by
Cited by
Year
A unified game-theoretic approach to multiagent reinforcement learning
M Lanctot, V Zambaldi, A Gruslys, A Lazaridou, K Tuyls, J Pérolat, D Silver, ...
arXiv preprint arXiv:1711.00832, 2017
3682017
A multi-agent reinforcement learning model of common-pool resource appropriation
J Perolat, JZ Leibo, V Zambaldi, C Beattie, K Tuyls, T Graepel
arXiv preprint arXiv:1707.06600, 2017
1242017
Actor-critic policy optimization in partially observable multiagent environments
S Srinivasan, M Lanctot, V Zambaldi, J Pérolat, K Tuyls, R Munos, ...
arXiv preprint arXiv:1810.09026, 2018
952018
Re-evaluating evaluation
D Balduzzi, K Tuyls, J Perolat, T Graepel
arXiv preprint arXiv:1806.02643, 2018
722018
OpenSpiel: A framework for reinforcement learning in games
M Lanctot, E Lockhart, JB Lespiau, V Zambaldi, S Upadhyay, J Pérolat, ...
arXiv preprint arXiv:1908.09453, 2019
712019
Open-ended learning in symmetric zero-sum games
D Balduzzi, M Garnelo, Y Bachrach, W Czarnecki, J Perolat, M Jaderberg, ...
International Conference on Machine Learning, 434-443, 2019
652019
α-rank: Multi-agent evaluation by evolution
S Omidshafiei, C Papadimitriou, G Piliouras, K Tuyls, M Rowland, ...
Scientific reports 9 (1), 1-29, 2019
642019
Approximate dynamic programming for two-player zero-sum markov games
J Perolat, B Scherrer, B Piot, O Pietquin
International Conference on Machine Learning, 1321-1329, 2015
622015
Generalizing the Wilcoxon rank-sum test for interval data
J Perolat, I Couso, K Loquin, O Strauss
International Journal of Approximate Reasoning 56, 108-121, 2015
512015
A generalised method for empirical game theoretic analysis
K Tuyls, J Perolat, M Lanctot, JZ Leibo, T Graepel
arXiv preprint arXiv:1803.06376, 2018
492018
Computing approximate equilibria in sequential adversarial games by exploitability descent
E Lockhart, M Lanctot, J Pérolat, JB Lespiau, D Morrill, F Timbers, K Tuyls
arXiv preprint arXiv:1903.05614, 2019
382019
Actor-critic fictitious play in simultaneous move multistage games
J Perolat, B Piot, O Pietquin
International Conference on Artificial Intelligence and Statistics, 919-928, 2018
372018
A generalized training approach for multiagent learning
P Muller, S Omidshafiei, M Rowland, K Tuyls, J Perolat, S Liu, D Hennes, ...
arXiv preprint arXiv:1909.12823, 2019
352019
Human-machine dialogue as a stochastic game
M Barlier, J Perolat, R Laroche, O Pietquin
16th Annual SIGdial Meeting on Discourse and Dialogue (SIGDIAL 2015), 2015
322015
Learning Nash equilibrium for general-sum Markov games from batch data
J Pérolat, F Strub, B Piot, O Pietquin
Artificial Intelligence and Statistics, 232-241, 2017
302017
On the convergence of model free learning in mean field games
R Elie, J Perolat, M Laurière, M Geist, O Pietquin
Proceedings of the AAAI Conference on Artificial Intelligence 34 (05), 7143-7150, 2020
282020
Symmetric decomposition of asymmetric games
K Tuyls, J Pérolat, M Lanctot, G Ostrovski, R Savani, JZ Leibo, T Ord, ...
Scientific reports 8 (1), 1-20, 2018
282018
Softened approximate policy iteration for Markov games
J Pérolat, B Piot, M Geist, B Scherrer, O Pietquin
International Conference on Machine Learning, 1860-1868, 2016
272016
From Poincaré recurrence to convergence in imperfect information games: Finding equilibrium via regularization
J Perolat, R Munos, JB Lespiau, S Omidshafiei, M Rowland, P Ortega, ...
International Conference on Machine Learning, 8525-8535, 2021
262021
Multiagent evaluation under incomplete information
M Rowland, S Omidshafiei, K Tuyls, J Perolat, M Valko, G Piliouras, ...
arXiv preprint arXiv:1909.09849, 2019
222019
The system can't perform the operation now. Try again later.
Articles 1–20