A model-based approach to attributed graph clustering Z Xu, Y Ke, Y Wang, H Cheng, J Cheng Proceedings of the 2012 ACM SIGMOD international conference on management of …, 2012 | 431 | 2012 |
GBAGC: A general Bayesian framework for attributed graph clustering Z Xu, Y Ke, Y Wang, H Cheng, J Cheng ACM Transactions on Knowledge Discovery from Data (TKDD) 9 (1), 1-43, 2014 | 87 | 2014 |
Agile and accurate CTR prediction model training for massive-scale online advertising systems Z Xu, D Li, W Zhao, X Shen, T Huang, X Li, P Li Proceedings of the 2021 international conference on management of data, 2404 …, 2021 | 50 | 2021 |
Efficient attribute-constrained co-located community search J Luo, X Cao, X Xie, Q Qu, Z Xu, CS Jensen 2020 IEEE 36th International Conference on Data Engineering (ICDE), 1201-1212, 2020 | 26 | 2020 |
Effective and efficient spectral clustering on text and link data Z Xu, Y Ke Proceedings of the 25th ACM International on Conference on Information and …, 2016 | 24 | 2016 |
Towards better generalization of adaptive gradient methods Y Zhou, B Karimi, J Yu, Z Xu, P Li Advances in Neural Information Processing Systems 33, 810-821, 2020 | 21 | 2020 |
Convergence analysis of gradient descent for eigenvector computation Z Xu, X Cao, X Gao International Joint Conferences on Artificial Intelligence, 2018 | 18 | 2018 |
Towards practical alternating least-squares for CCA Z Xu, P Li Advances in Neural Information Processing Systems 32, 2019 | 17 | 2019 |
Multi-Modal Inverse Constrained Reinforcement Learning from a Mixture of Demonstrations Guanren Qiao, Guiliang Liu, Pascal Poupart, Zhiqiang Xu Thirty-seventh Conference on Neural Information Processing Systems, 2023, 2023 | 14* | 2023 |
A practical Riemannian algorithm for computing dominant generalized Eigenspace Z Xu, P Li Conference on Uncertainty in Artificial Intelligence, 819-828, 2020 | 13 | 2020 |
Group representation theory for knowledge graph embedding C Cai, Y Cai, M Sun, Z Xu arXiv preprint arXiv:1909.05100, 2019 | 13 | 2019 |
Label-Retrieval-Augmented Diffusion Models for Learning from Noisy Labels Jian Chen, Ruiyi Zhang, Tong Yu, Rohan Sharma, Zhiqiang Xu, Tong Sun ... Thirty-seventh Conference on Neural Information Processing Systems, 2023, 2023 | 12* | 2023 |
On truly block eigensolvers via riemannian optimization Z Xu, X Gao International Conference on Artificial Intelligence and Statistics, 168-177, 2018 | 12 | 2018 |
Gradient descent meets shift-and-invert preconditioning for eigenvector computation Z Xu Advances in Neural Information Processing Systems 31, 2018 | 12 | 2018 |
On the overlooked pitfalls of weight decay and how to mitigate them: A gradient-norm perspective Z Xie, Z Xu, J Zhang, I Sato, M Sugiyama Advances in Neural Information Processing Systems 36, 2024 | 10 | 2024 |
Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering Z Xu, J Cheng, X Xiao, R Fujimaki, Y Muraoka Knowledge and Information Systems 53, 239-268, 2017 | 10 | 2017 |
Towards aligned layout generation via diffusion model with aesthetic constraints J Chen, R Zhang, Y Zhou, R Jain, Z Xu, R Rossi, C Chen arXiv preprint arXiv:2402.04754, 2024 | 9 | 2024 |
Unsupervised video domain adaptation for action recognition: A disentanglement perspective P Wei, L Kong, X Qu, Y Ren, Z Xu, J Jiang, X Yin Advances in Neural Information Processing Systems 36, 17623-17642, 2023 | 8 | 2023 |
Unsupervised video domain adaptation: A disentanglement perspective P Wei, L Kong, X Qu, X Yin, Z Xu, J Jiang, Z Ma arXiv preprint arXiv:2208.07365, 2022 | 8 | 2022 |
Faster noisy power method Z Xu, P Li International Conference on Algorithmic Learning Theory, 1138-1164, 2022 | 7 | 2022 |