Fan Yang
Fan Yang
Verified email at
Cited by
Cited by
Acme: A research framework for distributed reinforcement learning
M Hoffman, B Shahriari, J Aslanides, G Barth-Maron, F Behbahani, ...
arXiv preprint arXiv:2006.00979, 2020
Flexps: Flexible parallelism control in parameter server architecture
Y Huang, T Jin, Y Wu, Z Cai, X Yan, F Yang, J Li, Y Guo, J Cheng
Proceedings of the VLDB Endowment 11 (5), 566-579, 2018
Husky: Towards a more efficient and expressive distributed computing framework
F Yang, J Li, J Cheng
Proceedings of the VLDB Endowment 9 (5), 420-431, 2016
Quegel: A general-purpose query-centric framework for querying big graphs
D Yan, J Cheng, MT Özsu, F Yang, Y Lu, J Lui, Q Zhang, W Ng
arXiv preprint arXiv:1601.06497, 2016
Lftf: A framework for efficient tensor analytics at scale
F Yang, F Shang, Y Huang, J Cheng, J Li, Y Zhao, R Zhao
Proceedings of the VLDB Endowment 10 (7), 745-756, 2017
A comparison of general-purpose distributed systems for data processing
J Li, J Cheng, Y Zhao, F Yang, Y Huang, H Chen, R Zhao
2016 IEEE International Conference on Big Data (Big Data), 378-383, 2016
LoSHa: A General Framework for Scalable Locality Sensitive Hashing
RZ Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang, Yunjian Zhao, Xiao Yan
Proceedings of the 40th International ACM SIGIR Conference on Research and …, 2017
The best of both worlds: Big data programming with both productivity and performance
F Yang, Y Huang, Y Zhao, J Li, G Jiang, J Cheng
Proceedings of the 2017 ACM International Conference on Management of Data …, 2017
Lightweight fault tolerance in large-scale distributed graph processing
D Yan, J Cheng, F Yang
arXiv preprint arXiv:1601.06496, 2016
Launchpad: a programming model for distributed machine learning research
F Yang, G Barth-Maron, P Stańczyk, M Hoffman, S Liu, M Kroiss, A Pope, ...
arXiv preprint arXiv:2106.04516, 2021
The system can't perform the operation now. Try again later.
Articles 1–10