Acme: A research framework for distributed reinforcement learning M Hoffman, B Shahriari, J Aslanides, G Barth-Maron, F Behbahani, ... arXiv preprint arXiv:2006.00979, 2020 | 106 | 2020 |
Flexps: Flexible parallelism control in parameter server architecture Y Huang, T Jin, Y Wu, Z Cai, X Yan, F Yang, J Li, Y Guo, J Cheng Proceedings of the VLDB Endowment 11 (5), 566-579, 2018 | 65 | 2018 |
Husky: Towards a more efficient and expressive distributed computing framework F Yang, J Li, J Cheng Proceedings of the VLDB Endowment 9 (5), 420-431, 2016 | 58 | 2016 |
Quegel: A general-purpose query-centric framework for querying big graphs D Yan, J Cheng, MT Özsu, F Yang, Y Lu, J Lui, Q Zhang, W Ng arXiv preprint arXiv:1601.06497, 2016 | 46 | 2016 |
Lftf: A framework for efficient tensor analytics at scale F Yang, F Shang, Y Huang, J Cheng, J Li, Y Zhao, R Zhao Proceedings of the VLDB Endowment 10 (7), 745-756, 2017 | 27 | 2017 |
A comparison of general-purpose distributed systems for data processing J Li, J Cheng, Y Zhao, F Yang, Y Huang, H Chen, R Zhao 2016 IEEE International Conference on Big Data (Big Data), 378-383, 2016 | 16 | 2016 |
LoSHa: A General Framework for Scalable Locality Sensitive Hashing RZ Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang, Yunjian Zhao, Xiao Yan Proceedings of the 40th International ACM SIGIR Conference on Research and …, 2017 | 11 | 2017 |
The best of both worlds: Big data programming with both productivity and performance F Yang, Y Huang, Y Zhao, J Li, G Jiang, J Cheng Proceedings of the 2017 ACM International Conference on Management of Data …, 2017 | 10 | 2017 |
Lightweight fault tolerance in large-scale distributed graph processing D Yan, J Cheng, F Yang arXiv preprint arXiv:1601.06496, 2016 | 8 | 2016 |
Launchpad: a programming model for distributed machine learning research F Yang, G Barth-Maron, P Stańczyk, M Hoffman, S Liu, M Kroiss, A Pope, ... arXiv preprint arXiv:2106.04516, 2021 | 5 | 2021 |