关注
Sebastian Borgeaud
Sebastian Borgeaud
DeepMind
在 google.com 的电子邮件经过验证
标题
引用次数
引用次数
年份
Flamingo: a visual language model for few-shot learning
JB Alayrac, J Donahue, P Luc, A Miech, I Barr, Y Hasson, K Lenc, ...
Advances in neural information processing systems 35, 23716-23736, 2022
33632022
Emergent abilities of large language models
J Wei, Y Tay, R Bommasani, C Raffel, B Zoph, S Borgeaud, D Yogatama, ...
arXiv preprint arXiv:2206.07682, 2022
3011*2022
Training compute-optimal large language models
J Hoffmann, S Borgeaud, A Mensch, E Buchatskaya, T Cai, E Rutherford, ...
arXiv preprint arXiv:2203.15556, 2022
2319*2022
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ...
arXiv preprint arXiv:2312.11805, 2023
22092023
Scaling language models: Methods, analysis & insights from training gopher
JW Rae, S Borgeaud, T Cai, K Millican, J Hoffmann, F Song, J Aslanides, ...
arXiv preprint arXiv:2112.11446, 2021
1223*2021
Improving language models by retrieving from trillions of tokens
S Borgeaud, A Mensch, J Hoffmann, T Cai, E Rutherford, K Millican, ...
arXiv preprint arXiv:2112.04426, 2021
10112021
Gemma: Open models based on gemini research and technology
G Team, T Mesnard, C Hardin, R Dadashi, S Bhupatiraju, S Pathak, ...
arXiv preprint arXiv:2403.08295, 2024
7352024
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context
G Team, P Georgiev, VI Lei, R Burnell, L Bai, A Gulati, G Tanzer, ...
arXiv preprint arXiv:2403.05530, 2024
6992024
Perceiver io: A general architecture for structured inputs & outputs
A Jaegle, S Borgeaud, JB Alayrac, C Doersch, C Ionescu, D Ding, ...
arXiv preprint arXiv:2107.14795, 2021
5972021
OpenSpiel: A framework for reinforcement learning in games
M Lanctot, E Lockhart, JB Lespiau, V Zambaldi, S Upadhyay, J Pérolat, ...
arXiv preprint arXiv:1908.09453, 2019
3062019
Accelerating large language model decoding with speculative sampling
C Chen, S Borgeaud, G Irving, JB Lespiau, L Sifre, J Jumper
arXiv preprint arXiv:2302.01318, 2023
2472023
Gemini: A family of highly capable multimodal models
R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, J Schalkwyk, ...
arXiv preprint arXiv:2312.11805 1, 2023
2322023
Unsupervised learning of object keypoints for perception and control
TD Kulkarni, A Gupta, C Ionescu, S Borgeaud, M Reynolds, A Zisserman, ...
Advances in neural information processing systems 32, 2019
2212019
Gemma 2: Improving open language models at a practical size
G Team, M Riviere, S Pathak, PG Sessa, C Hardin, S Bhupatiraju, ...
arXiv preprint arXiv:2408.00118, 2024
2022024
Mikoł aj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual language model for few-shot learning
JB Alayrac, J Donahue, P Luc, A Miech, I Barr, Y Hasson, K Lenc, ...
Advances in Neural Information Processing Systems 35, 23716-23736, 2022
782022
General-purpose, long-context autoregressive modeling with Perceiver AR
C Hawthorne, A Jaegle, C Cangea, S Borgeaud, C Nash, M Malinowski, ...
International Conference on Machine Learning, 8535-8558, 2022
632022
Emergent abilities of large language models. arXiv 2022
J Wei, Y Tay, R Bommasani, C Raffel, B Zoph, S Borgeaud, D Yogatama, ...
arXiv preprint arXiv:2206.07682, 2023
592023
Unified scaling laws for routed language models
A Clark, D de Las Casas, A Guy, A Mensch, M Paganini, J Hoffmann, ...
International conference on machine learning, 4057-4086, 2022
512022
Spriteworld: A flexible, configurable reinforcement learning environment
N Watters, L Matthey, S Borgeaud, R Kabra, A Lerchner
192019
Leveraging Sentence Similarity in Natural Language Generation: Improving Beam Search using Range Voting
S Borgeaud, G Emerson
arXiv preprint arXiv:1908.06288, 2019
152019
系统目前无法执行此操作,请稍后再试。
文章 1–20